首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
地质学   13篇
天文学   8篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   2篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
The effect of the curvature of open magnetic field lines on the generation of electric fields in radio pulsars is considered in the framework of a Goldreich-Julian model, for both a regime with a free outflow of electrons from the neutron-star surface and the case of a small thermoemission current. An expression for the electron thermoemission current in a strong magnetic field is derived. The electric field associated with the curvature of the magnetic flux tubes is comparable to the field generated by the relativistic dragging of the inertial frames.  相似文献   
2.
We consider the influence of a non-dipolar magnetic field on the gamma-ray emission from the polar regions of a radio pulsar. The pulsar is treated in a Goldreich-Julian model with a free flow of charge from the surface of the neutron star. When finding the intensity of the gamma-ray radiation of the pulsar tube, both curvature gamma-ray radiation from the primary electrons and non-resonance inverse Compton scattering of thermal photons from the polar cap on primary electrons are taken into account. When finding the height of the upper plate of the pulsar diode, we included only positrons created by the curvature radiation of primary electrons. We assumed that the polar cap is heated by the return positron current. The influence on the gamma-ray emission of variations in both the radius of curvature of the magnetic force lines and in the electric field due to the non-dipolarity of the magnetic field were taken into account. The presence of even weak non-dipolarity of the magnetic field leads to a sharp decrease in the intensity of the gamma-ray emission from the pulsar tube at energies 1–100 MeV, while the intensity of the inverse Compton radiation (at energies 1–100 GeV) varies only relatively weakly.  相似文献   
3.
The effect of curvature of open magnetic-field tubes on the death lines of radio pulsars is studied. The solution is obtained in the framework of a Goldreich-Julian model for both dipolar and asymmetric magnetic fields. The tube-axis curvature can shift the death line appreciably toward either longer or shorter periods. If the field is dipolar and gamma rays are generated by the inverse Compton effect, the formation of secondary plasma is more efficient near the death line. In the case of an asymmetric magnetic field, the generation of radio emission beyond the tube of open field lines is possible.  相似文献   
4.
The electron cyclotron resonance leads to a large enhancement of radiative force and may result in the ejection from magnetized compact stars (Papers I and II). On this ground, the acceleration of charged particles by radiation in a strong magnetic field is considered. Different regimes of ejection, the dependence on intensity, spectrum, angular distribution and polarization of accelerating radiation, and the influence of the opacity of ejecting plasma are analyzed. The energy of ejected plasma is shown to increase up to relativistic values, in many cases the gamma-factor appears to be 1. A possible connection of relativistic ejection with the origin of gamma-ray bursts and other astrophysical consequences are discussed.  相似文献   
5.
We show that a quasar (or active galactic nucleus) emitting a one-sided jet (or displaying asymmetry in its emission of particles and photons) can be accelerated, causing it to be ejected from its galaxy.  相似文献   
6.
The model of a magnetized rotating neutron star with an electric current in the region of its fluid polar magnetic caps is considered. The presence of an electric current leads to differential rotation of the magnetic caps. The rotation structure is determined by the electric current density distribution over the surface. In the simplest axisymmetric configuration, the current flows in one direction near the polar cap center and in the opposite direction in the outer ring (the total current is zero for the neutron star charge conservation). In this case, two rings with opposite directions of rotation appear on the neutron star surface, with the inner ring always lagging behind the star’s main rotation. The differential rotation velocity is directly proportional to the electric current density gradient along the polar cap radius. At a width of the region of change in the electric current from 1 to 102 cm and a period ~1 s and a magnetic field B ~ 1012 G typical of radio pulsars, the linear differential rotation velocity is ~10?2–10?4 cm s?1 (corresponding to a revolution time of ~0.1–10 yr).  相似文献   
7.
Charged particle acceleration is considered by a radiation flux from a star or hot spot in X-ray pulsars. It is shown that for any distance from the star there exists the upper velocity limit up to which a particle can be accelerated by radiation. This critical velocity does not depend on the luminosity of the spot. Near the hot spot surface the critical velocityv0.65c. These results are applied to plasma acceleration inX-ray pulsars. The mechanism is advanced, of -ray generation in the course of plasma accretion, onto a neutron star. It is shown that in the presence of a large magnetic field and high luminosity of the spot the relativistic electron-position avalanche may appear. The optical depth of the electron-positron cloud achieves the value of order one. The X-ray quanta emitted by the spot are scattered by relativistic (2.6) electron-positron pairs and are transformed into -radiation. Hard quanta with energy 1 MeV leave the generation region in the narrow cone 0.25.  相似文献   
8.
Results of computations of the energy spectrum of neutrons radiated by the planet Mercury, generated by the action of cosmic rays, are presented. The dependence of the neutron radiation on both the temperature and composition of the subsurface layers of the planetary regolith are investigated. The fluxes of γ-rays in lines of aluminum (27Al, 7.7240 MeV), silicon (28Si, 3.5390 MeV), calcium (40Ca, 1.9427 MeV), and iron (56Fe, 7.6312 and 7.6456 MeV) generated during neutron capture by these nuclei are also calculated. The intensity of the radiation in these lines depends on both the composition and temperature of the surface. This must be taken into account when interpreting measurements of γ-ray radiation from nuclear lines produced in neutron capture reactions on the substance of Mercury.  相似文献   
9.
Exact analytic expressions for the vacuum electromagnetic fields produced by an oscillating magnetized sphere are obtained. The solutions are analysed for various modes of pulsation and for low-order multipole magnetic moments. Within the context of neutron star oscillations, the possibility of gamma-ray generation is discussed. It is shown that the radial pulsations provide an efficient mechanism for generation of gamma-radiation and electron-positron pairs in some regions around the neutron star. For this, the non-vanishing quadrupole magnetic moment oblique to the dipole moment is required. The model for gamma-ray bursts that we propose is briefly considered.  相似文献   
10.
An approximate method for calculating the returning positron flux in the polar-cap regions of a radio pulsar is proposed. The pulsar is considered in the Goldreich-Julian model for a regime of free-electron emission from the neutron-star surface in the region of open lines of the dipolar magnetic field. Calculations have been done for the case when the dipolar magnetic moment is aligned with the star's rotational axis. The acceleration of primary electrons is assumed to occur near the neutron-star surface on scales comparable to the transverse radius of the tube of open field lines. The generation of electron-positron pairs by curvature radiation of the primary electrons is taken into account. A considerable contribution to the returning flux is made by the region where the electric field is screened by the electron-positron plasma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号