首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
大气科学   2篇
地球物理   1篇
地质学   2篇
海洋学   1篇
天文学   1篇
自然地理   2篇
  2021年   1篇
  2014年   1篇
  2012年   1篇
  2007年   1篇
  2004年   1篇
  2001年   2篇
  2000年   1篇
  1996年   1篇
排序方式: 共有9条查询结果,搜索用时 811 毫秒
1
1.
Science has recently faced a new challenge in that it must now provide itsbest knowledge to support the urgent policy-making concerning, e.g., risks oftechnology, environmental pollution, or the climate change. However, thisknowledge unfortunately often can host high uncertainties as the naturalsystems are complex. How to proceed when the facts given by the scientists arediverging and uncertain, while the decision-making is urgent? Funtowicz andRavetz (1992, 1993) argue that in this case traditional `Normal' science(described by Kuhn (1970)) becomes inappropriate and that science shouldbecome `Post-Normal' in order to more effectively cope with these contemporaryproblems. The philosophy, or methodology, of Post-Normal Science is brieflyintroduced and its corelation with the climate change issue, specifically withthe compilation process and summary content of the Second Assessment Report(SAR) from the Working Group I of the Intergovernmental Panel on ClimateChange (IPCC, 1996a), is viewed. It seems that climate science around IPPCcan, to a relatively large extent, be characterized as `Post-Normal'.Moreover, results from some related studies indicate that the elements ofPost-Normal Science in the IPCC have enhanced the problem-solving in theclimate change issue.  相似文献   
2.
The narrow slope-confined warm core of the West Spitsbergen Current (WSC) is a major pathway for warm and saline Atlantic Water to enter the Arctic Ocean. Long-term mean northward cooling and freshening rates in the warm core of the WSC are calculated with error ranges, and heat loss estimates are derived. The observed combination of cooling and freshening is not consistent with a hypothesis of pure isopycnal offshore mixing, but rather suggests influence from diapycnal mixing connected, for example, to exchange with shelf waters.  相似文献   
3.
The Langtang catchment is a high mountain, third order catchment in the Gandaki basin in the Central Himalaya (28.2°N, 85.5°E), that eventually drains into the Ganges. The catchment spans an elevation range from 1400 to 7234 m a.s.l. and approximately one quarter of the area is glacierized. Numerous research projects have been conducted in the valley during the last four decades, with a strong focus on the cryospheric components of the catchment water balance. Since 2012 multiple weather stations and discharge stations provide measurements of atmospheric and hydrologic variables. Full weather stations are used to monitor at an hourly resolution all four radiation components (incoming and outgoing shortwave and longwave radiation; SWin/out and LWin/out), air temperature, humidity, wind speed and direction, and precipitation, and cover an elevational range of 3862–5330 m a.s.l. Air temperature and precipitation are monitored along elevation gradients for investigations of the spatial variability of the high mountain meteorology. Dedicated point-scale observations of snow cover, depth and water equivalent as well as ice loss have been carried out over multiple years and complement the observations of the water cycle. All data presented is openly available in a database and will be updated annually.  相似文献   
4.
We explore the correlation between an asteroid’s taxonomy and photometric phase curve using the H, G12 photometric phase function, with the shape of the phase function described by the single parameter G12. We explore the usability of G12 in taxonomic classification for individual objects, asteroid families, and dynamical groups. We conclude that the mean values of G12 for the considered taxonomic complexes are statistically different, and also discuss the overall shape of the G12 distribution for each taxonomic complex. Based on the values of G12 for about half a million asteroids, we compute the probabilities of C, S, and X complex membership for each asteroid. For an individual asteroid, these probabilities are rather evenly distributed over all of the complexes, thus preventing meaningful classification. We then present and discuss the G12 distributions for asteroid families, and predict the taxonomic complex preponderance for asteroid families given the distribution of G12 in each family. For certain asteroid families, the probabilistic prediction of taxonomic complex preponderance can clearly be made. In particular, the C complex preponderant families are the easiest to detect, the Dora and Themis families being prime examples of such families. We continue by presenting the G12-based distribution of taxonomic complexes throughout the main asteroid belt in the proper element phase space. The Nysa–Polana family shows two distinct regions in the proper element space with different G12 values dominating in each region. We conclude that the G12-based probabilistic distribution of taxonomic complexes through the main belt agrees with the general view of C complex asteroid proportion increasing towards the outer belt. We conclude that the G12 photometric parameter cannot be used in determining taxonomic complex for individual asteroids, but it can be utilized in the statistical treatment of asteroid families and different regions of the main asteroid belt.  相似文献   
5.
A method for determining the distribution of supermicrometer nitrate between size-segregated sea-salt and soil derived particles is presented. The analysis is based on field data from six measurements at a coastal site in southern Finland, and on a theoretical treatment taking into account the transfer of gaseous species onto particle surfaces and their subsequent reaction. Significant amounts of nitrate were found in both the particle types, with the fraction of nitrate associated with soil particles varying from 20–50% in the 1–2 m size to near 90% in particles larger than 10 m. Overall, the nitrate accumulation followed closely the relative abundances of these two particle types. Two overlapping modes in supermicron nitrate mass size distributions could be identified. The lower mode, associated with sea-salt, was located between the surface-area and volume distribution of sodium peaking at about 2–3 m of EAD. The upper mode peaked at 3–5 m and followed more closely the surface-area distribution of calcium in all samples. At our site, the accumulation of nitrate into both particle types was shown to be limited by an effective surface reaction rate rather than by gas-phase diffusion. This rate was estimated to be considerably larger for sea-salt particles. Strong evidence in support of the saturation of nitrate in sea-salt particles were obtained.  相似文献   
6.
The Channagiri Mafic-Ultramafic Complex occupies lowermost section of the Neoarchaean Shimoga supracrustal group in the Western Dharwar Craton. It is a segmented body occupying the interdomal troughs of granitoids. The magnetite deposits occur in the northeastern portion; typically occupying the interface zone between gabbro and anorthositic. Mineralogically, the deposits are simple with abundant magnetite and ilmenite. Hogbomite is a consistent minor mineral. Magnetites are typically vanadiferous (0.7–1.25% V2O5). Ilmenite consistently analyses more MgO and MnO than coexisting magnetite. Chlorite, almost the only silicate present; lies in the range of ripidolite, corundophilite and sheridanite. The chromiferous suit occupying eastern side of Hanumalapur block (HPB) contains Fe-Cr-oxide analysing 37.8–11.9% Cr2O3 and 40.5–80% FeO t . In these too, chlorite, typically chromiferous (0.6–1.2% Cr2O3), is the most dominant silicate mineral. Geochemistry of V-Ti-magnetite is dominated by Fe, Ti and V with Al, Si, Mg and Mn contributing most of the remaining. Cr, Ni, Zn, Co, Cu, Ga and Sc dominate trace element geochemistry. The Cr-magnetite is high in Cr2O3 and PGE. Two separate cycles of mafic magmatism are distinguished in the CMUC. The first phase of first cycle, viz., melagabbro-gabbro, emplaced in the southeastern portion, is devoid of magnetite deposits. The second phase, an evolved ferrogabbroic magma emplaced in differentiated pulses, occupying northeastern portion of the complex, consists of melagabbro→gabbro-anorthosite→V-Ti magnetite→ferrogabbro sequence. Increase in oxygen fugacity facilitated deposition of V-Ti magnetite from ferrogabbroic magma pulse emplaced in late stages. The second cycle of chromiferous PGE mineralized suite comprises fine-grained ultramafite→alternation of pyroxinite-picrite→Crmagnetite sequence formed from fractionation of ferropicritic magma. HPB also includes >65m thick sill-like dioritic phase at the base of the ferriferous suit and a sinuous band of coarse-grained ultramafite enclosed within the chromiferous suit; both unrelated to the two mafic magmatic cycles.  相似文献   
7.
A numerical 1‐dimensional fine grid sea ice thermodynamic model is constructed accounting specially for: (1) slush formation via flooding and percolation of rain‐ and snow meltwater, (2) the consequent snow ice formation via slush freezing, and (3) the effects of snow compaction on heat diffusion in snow cover. The model simulations from ice winter period 1979–90 are viewed against corresponding observations at the Kemi fast ice station (65 °39.8' N, 24° 31.4' E). The 11‐year averaged model results show good overall consistency with corresponding total ice thickness observations. The model slightly overestimates the snow ice thickness and underestimates the snow thickness in February and March, which is mainly addressed to the model assumption of isostatic balance (i.e., slush formation via flooding), which was probably not fully satisfied at the coastal Kemi fast ice station. Supposing that this assumption is nevertheless generally valid away from the very coastal fast ice zone, an estimate for sea ice sensitivity to changes in winter precipitation rate is produced. Increased precipitation leads to an increase only in snow ice thickness with little change in total ice thickness, while a reduction in precipitation of more than {213}50% causes a significant increase in total ice thickness. The difference in modeled total ice thickness for the case of artificially neglecting snow ice physics is about 25%, which indicates the importance of including snow ice physics in a sea ice model dealing with the seasonal sea ice zone.  相似文献   
8.
The structure of the oceanic Arctic front west of Spitsbergen is investigated using data from high-resolution CTD sections from September 1998-2000. Below the fresher surface layer, the front appears as a temperature-salinity front situated near the shelf break. No clear corresponding front in density is found. Our analysis suggests that barotropic front instability is a main factor in provoking subsurface cross-front exchange. The subsurface heat loss in the West Spitsbergen Current due to this exchange is estimated to be of the same order of magnitude as the heat loss to the atmosphere in the surface layer.  相似文献   
9.
Numerous observations on mafic–ultramafic layered intrusions, sills and dykes show that chilled margins always develop as an integral part of their marginal reversals and possess the following features: (a) they are commonly much more evolved or primitive than bulk intrusion compositions, (b) evolved chilled margins are composed of the low temperature cotectic assemblages of relevant magmatic systems and (c) tend to be compositionally similar in intrusions formed from different parental magmas, (d) fine-grained chilled margins are notably absent in many intrusions, with contact rocks being represented by medium- to coarse-grained cumulates. The anomalous features of chilled margins can be partly attributed to contamination, intratelluric inhomogeneity of magma, changes in composition of intruding magma, loss of magma from the chamber, supercooling, etc. A major process still remains, however, illusive, but appears to be universally operating along the cooling margins of magmatic bodies in a liquid state, being gravity-independent and temperature gradient-driven. We recognize this not yet specified process as Soret fractionation and explain the above observations in the following way. Primary chilled margins do not commonly survive because of intensive remelting by heat flux from the interior of the chamber. The subsequently formed “secondary chilled margins” represent cumulates that crystallized from liquids produced by temperature gradient-driven Soret fractionation. At high temperature gradients the process tends to produce similar cotectic liquids crystallizing gabbronorite (or gabbro) from all parental magmas of a given magmatic system, resulting in compositionally similar “secondary chilled margins” that are more evolved than bulk compositions. At low temperature gradients the process produces liquids that are only slightly more fractionated than the parental magma and form “secondary chilled margins” that are more primitive than bulk compositions. This interpretation suggests that, apart from the rare cases of chilled margins that survived remelting, they should not be used as monitors for parental magma compositions of intrusive bodies, even if all conventional complicating factors were not operative.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号