首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地质学   1篇
天文学   6篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Propagation of flare protons in the solar atmosphere   总被引:1,自引:0,他引:1  
The velocity dispersion for a large number of solar proton events is analyzed in the energy regime of 10–60 MeV. It is found for all events that the time from the flare to particle maximum t m is well represented by a sum of two components. The first component which is energy independent describes the propagation in the solar atmosphere, the second component describes the propagation in the interplanetary medium giving a velocity dispersion v × t m = const. The additional study of time intensity profiles, onset times, and multispaceprobe observations reveals that the propagation in the solar atmosphere consists of three processes: (1) A rapid transport process in the initial ( 1 h) phase after the event fills up a fast propagation region (FPR), which may extend up to 60° from the flare site and which is tentatively identified with a large unipolar magnetic cell as seen on H synoptic charts, (2) a large-scale drift process which is energy independent with drift velocities v D in the range 1° v D 4°h-1, and simultaneously (3) a diffusion process which yields the general broadening of the intensity time profiles for eastern hemisphere events, which is, however, of less importance than previously assumed.  相似文献   
2.
In the quasi-linear theory of pitch angle scattering the power spectrum of magnetic field fluctuations is related to the shape of the pitch angle diffusion coefficient D(), the absolute value of the mean free path , and the rigidity dependence of the mean free path (R). We discuss these relations in detail during the solar particle event of 11 April, 1978 which was observed on HELIOS-2 at a distance of 0.49 AU from the Sun. Magnetic field measurements obtained during the time of the event are used as a basis for the layer model in which the method of particle trajectories in an actually measured field is used to simulate pitch angle diffusion. The values of D() and based on the trajectory simulation for 100 MeV protons (field approach) are compared with results obtained from solar proton data (particle approach) and with predictions from quasi-linear theory based on the additional assumption of the slab model for magnetic field fluctuations (QLT approach). The time of the event is characterized by a high level of field fluctuations, the observed mean free path of about 0.03 AU for 100 MeV protons is smaller than the average value near 1 AU. Results from the field and particle approaches agree surprisingly well. The remaining difference in the mean free path of about a factor of 2 could be due to tangential discontinuities which are measured by the magnetometer, but not seen by the real particles traveling along the average field. The results from the field and QLT approaches based on the same set of magnetic field measurements differ by about a factor of 4. One of the reasons for this discrepancy is that the conditions for resonance scattering are only marginally valid. In addition, the wave vectors representing Alfvén-type fluctuations may not be totally field aligned. This deviation from the slab model would cause an increase of the theoretically predicted mean free path and lead to better agreement with the other two approaches.  相似文献   
3.
We present a sample of solar energetic particle events observed between November 18 and December 31, 1982 by the HELIOS 1, the VENERA 13, and IMP 8 spacecraft. During the entire time period all three spacecraft were magnetically connected to the western hemisphere of the Sun with varying radial and angular distances from the flares. Eleven proton events, all of them associated with interplanetary shocks, were observed by the three spacecraft. These events are visible in the low-energy (about 4 MeV) as well as the high-energy (30 MeV) protons. In the largest events protons were observed up to energies of about 100 MeV. The shocks were rather fast and in some cases extended to more than 90% east of the flare site. Assuming a symmetrical configuration, this would correspond to a total angular extent of some interplanetary shocks of about 180%. In addition, due to the use of three spacecraft at different locations we find some indication for the shape of the shock front: the shocks are fastest close to the flare normal and are slower at the eastern flank. For particle acceleration we find that close to the flare normal the shock is most effective in accelerating energetic particles. This efficiency decreases for observers connected to the eastern flank of the shock. In this case, the efficiency of shock acceleration for high-energy protons decreases faster than for low-energy protons. Observation of the time-intensity profiles combined with variations of the anisotropy and of the steepness of the proton spectrum allows one in general to define two components of an event which we term solar and interplanetary. We attempt to describe the results in terms of a radially variable efficiency of shock acceleration. Under the assumption that the shock is responsible not only for the interplanetary, but also for the solar component, we find evidence for a very efficient particle acceleration while the shock is still close to the Sun, e.g., in the corona. In addition, we discuss this series of strong flares and interplanetary shocks as a possible source for the formation of a superevent.  相似文献   
4.
For the time periods 1979 April 22–May 17 and 1980 May 9–June 10, when the HELIOS spacecraft were located inside 0.5 AU, we compared the antenna temperature T A of the 466 kHz type III bursts measured by the SBH instrument on ISEE 3 with the fluxes of 0.5 MeV electrons measured by HELIOS. For 51 flare-associated kilometric type III bursts (FAIII bursts) with log(T A) > 10 we find: (1) 25 bursts (49%) are accompanied by a relativistic electron event in interplanetary space, (2) the probability for detection of an electron event decreases from more than 74% inside a cone of ± 20 ° to 56% inside a cone of ± 60° around the flare site, (3) there is only a small correlation between the brightness temperature of the radio burst and the size of the electron event, and (4) despite the broad scatter of these values there is a clear indication that for a given size of the relativistic electron event the intensity of the type III burst is about a factor of 5 higher if it is accompanied by a type II burst. These results give evidence (a) that at least part of the relativistic electrons frequently is accelerated together with non-relativistic electrons and (b) that the coronal shock associated with the metric type II burst has a weaker effect on relativistic than on non-relativistic electrons.Now at DFVLR, Oberpfaffenhofen, Germany.  相似文献   
5.
6.
We present a new method to separate interplanetary and coronal propagation, starting from intensity variations observed by spaceprobes at different heliolongitudes. In general, a decrease in absolute intensities is observed simultaneously with an increase in temporal delays. The coupling of these two effects can be described by Reid's model of coronal diffusion and can in principle be used to determine the two coronal time constants, diffusion time t c and escape time A. In addition, a least-squares fit method is used to determine the parameters of interplanetary transport, assuming a radial dependence as (r) = 0(r/1 AU)b. The method is applied to the two solar events of 27 December, 1977 and 1 January, 1978 which were observed by the spaceprobes Helios 1, Helios 2, and Prognoz 6. Energetic particle data are analysed for 13–27 MeV protons and -0.5 MeV electrons. For the regions in space encountered during these events the mean free path of electrons is smaller than that of protons. Straight interpolation between the two rigidities leads to a rather flat rigidity dependence (P) P n with n = 0.17–0.25. This contradicts the prediction of a constant mean free path or of the transition to scatter-free propagation below about 100 MV rigidity. In three of the four cases the mean free path of 13–27 MeV protons is of the order 0.17 AU, the mean free path of electrons of the order 0.06 AU. For protons we find b - 0.7 for the exponent of the radial variation.The concept of two different coronal propagation regimes is confirmed. It is remarkable that in both regimes electrons are transported more efficiently than protons. This holds for the temporal delay as well as for the amplitude decrease. This is in contrast with the long existing concept of rigidity independent transport and puts severe limits to any model of coronal transport. For the December event all three spaceprobes are in the fast propagation regime up to an angular distance of 62°. For protons we find a finite delay even in the fast propagation region, corresponding to a coronal delay rate of about 0.8 hr rad-1 up to 60° angular distance. In contrast, relativistic electrons may reach this distance within a few minutes.The fast transport of electrons and the different behaviour of electrons and protons is in contradiction to the expanding bottle concept. An explanation of coronal transport by shock acceleration directly on open field lines could in principle work in case of protons in the fast propagation region, but would fail in case of the electrons. The fast and efficient transport of electrons is most likely due to a region of field lines extending over a wide range of longitudes directly from the active region into interplanetary space. The much slower transport of both particle types at large azimuthal distances can neither be explained by direct access to open field lines not by the direct shock acceleration concept. A possible explanation is the loop reconnection model in a modified version, allowing for a faster lateral transport of electrons.Now at AEG, 2000 Wedel, F.R.G.  相似文献   
7.
Schulze  B. M.  Richter  A. K.  Wibberenz  G. 《Solar physics》1977,54(1):207-228
For an observer in space the intensities and anisotropies of solar cosmic-ray events are governed by the duration and the functional shape of the injection processes near the Sun and by the propagation along the interplanetary magnetic field from the Sun to the observer. We study the influence of four different types of solar injections (Gaussian, exponential, step-function and coronal diffusion), and of a purely diffusive interplanetary propagation, where the diffusion coefficient has a power law dependence on the radial distance from the Sun, =Mr on both the time-intensity and the time-anisotropy profiles at 1 AU. The main results are as follows: A slow quasi-exponential decay of the intensity can be modelled in some cases; all finite injections produce high anisotropies during the main phase of an event; an effective solar injection length can be determined from simultaneous inspection of the intensities and anisotropies; the intensities and anisotropies do to first order not depend on the analytic shape of the various injection profiles. The model is applied to the November 18, 1968 solar event as observed by Pioneer 9 in the 7.5–21.5 MeV and 21.5–60 MeV energy channels. We obtain local diffusion coefficients in the range M= (2.5–5) × 1021 cm2 s–1 and injection periods of the order of 10–20 hr. Closer inspection reveals the change of interplanetary propagation conditions during the event.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号