首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   0篇
天文学   123篇
自然地理   2篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   7篇
  1988年   3篇
  1987年   7篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1982年   5篇
  1981年   4篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1977年   5篇
  1976年   5篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   3篇
  1971年   4篇
  1970年   4篇
  1969年   4篇
  1968年   4篇
  1967年   4篇
排序方式: 共有125条查询结果,搜索用时 546 毫秒
1.
Book reviews     
Howard  R. F.  van den Oord  G. H. J.  Švestka  Z. 《Solar physics》1996,169(1):225-227
  相似文献   
2.
3.
By using a combination of X-ray (HXIS), H (Haleakala), white-light corona (Solwind), and zodiacal light (Helios) images on 21–22 May, 1980 we demonstrate, and try to explain, the co-existence of a coronal mass ejection with a stationary post-flare coronal arch. The mass ejection was seen, both by Solwind and Helios, in prolongation of the path of a powerful spray, whereas the active region filament did not erupt. A tentative comparison is made with other occurrences of stationary, or quasi-stationary post-flare coronal arches.  相似文献   
4.
5.
6.
Zdeněk Švestka 《Solar physics》1989,121(1-2):399-417
One has to distinguish between two kinds of the gradual phase of flares: (1) a gradual phase during which no energy is released so that we see only cooling after the impulsive phase (a confined flare), and (2) a gradual phase during which energy release continues (a dynamic flare).The simplest case of (1) is a single-loop flare which might provide an excellent opportunity for the study of cooling processes in coronal loops. But most confined flares are far more complicated: they may consist of sets of unresolved elementary loops, of conglomerates of loops, or they form arcades the components of which may be excited sequentially. Accelerated particles as well as hot and cold plasma can be ejected from the flare site (coronal tongues, flaring arches, sprays, bright and dark surges) and these ejecta may cool more slowly than the source flare itself.However, the most important flares on the Sun are flares of type (2) in which a magnetic field opening is followed by subsequent reconnection of fieldlines that may continue for many hours after the impulsive phase. Therefore, the main attention in this review is paid to the gradual phase of this category of long-decay flares. The following items are discussed in particular: The wide energy range of dynamic flares: from eruptions of quiescent filaments to most powerful cosmic-ray flares. Energy release at the reconnection site and modelling of the reconnection process. The post-flare loops: evidence for reconnection; observations at different wavelengths; energy deposit in the chromosphere, chromospheric ablation, and velocity fields; loops in emission; shrinking loops; magnetic modelling. The gradual phase in X-rays and on radio waves. Post-flare X-ray arches: observations, interpretation, and modelling; relation to metric radio events and mass ejections, multiple-ribbon flares and anomalous events, hybrid events, possible relations between confined and dynamic flares.  相似文献   
7.
The Solar Flare Myth postulated by Gosling (1993) is a misunderstanding. It is true that most sources of coronal mass ejections (CMEs) cannot be classified as flares in the common old sense of that word. However, just for this reason the term eruptive flare has been introduced for all solar active phenomena in which an opening of field lines is involved and which lead to magnetic-field and mass ejections resulting in a CME. The process is essentially the same in all events, irrespective of' whether only adisparition brusque without any chromospheric brightening or a major two-ribbon flare is involved in it; the only difference is the different strength of the magnetic field in which the process was accomplished. The major two-ribbon (cosmic-ray) flares clearly represent the most energetic events of this kind, and, therefore, it is very misleading to claim that solar flares in general are phenomena with very little importance for solar-terrestrial physics.  相似文献   
8.
Švestka  Z.  Krieger  A. S.  Chase  R. C.  Howard  R. 《Solar physics》1977,52(1):69-90
We discuss the life-story of a transequatorial loop system which interconnected the newly born active region McMath 12474 with the old region 12472. The loop system was probably born through reconnection accomplished 1.5 to 5 days after the birth of 12474 and the loops were observed in soft X-rays for at least 1.5 days. Transient sharpenings of the interconnection and a striking brightening of the whole loop system for about 6 hr appear to be caused by magnetic field variations in the region 12474. A flare might have been related to the brightening, but only in an indirect way: the same emerging flux could have triggered the flare and at the same time strengthened the magnetic field at the foot-points of the loops. Electron temperature in the loop system, equal to 2.1 × 106 K in its quiet phase, increased to 3.1 × 106 K during the brightening. Electron density in the loop system was 1.3 × 109 cm–3 and it could be estimated to 7 × 108 cm–3 prior to the brightening. During the brightening the loops became twisted. There was no obvious effect whatsoever of the activity in 12474 upon the in erconnected old region. The final decay of the loop system reflected the decay of magnetic field in the region 12474.  相似文献   
9.
For almost 30 hr after the major (gamma-ray) two-ribbon flare on 6 November 1980, 03:30 UT, the Hard X-Ray Imaging Spectrometer (HXIS) aboard the SMM satellite imaged in > 3.5 keV X-rays a gigantic arch extending above the active region over the limb. Like a similar configuration on 22 May 1980, this arch formed the lowest part of a stationary post-flare radio noise storm recorded at metric wavelengths at Nançay and Culgoora. 6.5 hr after the flare a coronal region below the arch started quasi-periodic pulsations in X-ray brightness, observed by several SMM instruments. These brightness variations had no response in the chromosphere (H), very little in the transition layer (O v), but they clearly correlated with similar variations in brightness at 169 MHz. There were 13 pulses of this kind, with apparent periodicity of about 20 min, until another flare occurred in the active region at 15:00 UT. All the brightenings appeared within a localized area of about 30000 km2 in the northern part of the active region, but they definitely did not occur all at the same place.The top of the X-ray arch, at an altitude of 155 000 km, was continuously and smoothly decaying, taking no part in the striking variations below it. Therefore, the area variable in brightness does not seem to be the footpoint of the arch, as we supposed for similar variations on 22 May. More likely, it is a separate region connected directly with the source of the radio storm; particles accelerated in the storm may be dumped into the low corona and cause the X-ray enhancements. The X-ray arch was enhanced by two orders of magnitude in 3.5–5.5 keV X-ray counts and the temperature increased from 7.3 × 106 to 9 × 106 K when the new two-ribbon flare occurred at 15:00 UT. Thus, it is possible that energy is brought into the arch via the upper parts of the reconnecting flare loops - a process that can continue for hours.  相似文献   
10.
Dust particles (glass, tungsten, and nickel) with sizes ranging from 0.25 to 3m were levitated in a Paul-trap and charged by ions or electrons. For ions the particle potential is limited at field strength of about 1×109 V m–1 by a temperature-dependent discharge mechanism. The particles interaction with 2 to 20 keV electrons always leads to positive surface potentials which can be explained in terms of a decreased absorption of electrons by small particles. Micrometer sized agglomerates were used for the investigation of the electrostatic fragmentation. Fragmentation takes place in a twofold manner: small surface flufl can be removed or the parent particle can be disrupted into smaller agglomerates.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号