首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   918篇
  免费   38篇
  国内免费   7篇
测绘学   18篇
大气科学   98篇
地球物理   212篇
地质学   269篇
海洋学   61篇
天文学   198篇
综合类   2篇
自然地理   105篇
  2021年   13篇
  2020年   9篇
  2019年   8篇
  2018年   13篇
  2017年   10篇
  2016年   23篇
  2015年   19篇
  2014年   21篇
  2013年   48篇
  2012年   25篇
  2011年   43篇
  2010年   29篇
  2009年   50篇
  2008年   28篇
  2007年   33篇
  2006年   32篇
  2005年   34篇
  2004年   34篇
  2003年   34篇
  2002年   29篇
  2001年   26篇
  2000年   29篇
  1999年   21篇
  1998年   18篇
  1997年   26篇
  1996年   14篇
  1995年   15篇
  1994年   24篇
  1993年   17篇
  1992年   14篇
  1991年   8篇
  1990年   9篇
  1989年   11篇
  1988年   7篇
  1987年   10篇
  1986年   11篇
  1985年   14篇
  1984年   13篇
  1983年   12篇
  1982年   14篇
  1981年   9篇
  1980年   9篇
  1979年   14篇
  1978年   8篇
  1977年   12篇
  1976年   11篇
  1975年   9篇
  1974年   11篇
  1973年   6篇
  1972年   9篇
排序方式: 共有963条查询结果,搜索用时 31 毫秒
1.
An investigation of 531 active regions was made to determine the correlation between energy released by flares and the available energy in magnetic fields of the regions. Regions with magnetic flux greater than 1021 maxwell during the years 1967–1969, which included sunspot maximum, were selected for the investigation. A linear regression analysis of flare production on magnetic flux showed that the flare energy is correlated with magnetic energy with a coeificient of correlation of 0.78. Magnetic classification and field configuration also significantly affect the production of flares.This work was supported by the Aerospace Sponsored Research Program.  相似文献   
2.
A variety of measures of organic matter concentration and quality were made on samples collected from the top few mm of intertidal mudflat sediment over the course of a year, in order to assess the relative importance of biological and sedimentological influences on sedimentary organic matter. Winter and summer were times of relatively fine-grained sediment accumulation, caused by biological deposition or stabilization processes and resulting in higher organic matter concentrations. Stable carbon isotope and Br:C ratios indicated a planktonic source of bulk organic matter. Ratios of organic carbon to specific surface area of the sediments were consistent with an organic monolayer coverage of sediment grains. Correction for changing grain size during the year showed no change in the organic concentration per unit surface area, in spite of organic matter inputs by in situ primary production, buildup of heterotroph biomass and mucus coatings, and biodeposition of organic-rich seston. There were also no indications of changes in bulk organic quality, measured as hydrolyzable carbohydrates and amino acids, in response to these biological processes. It is concluded that biological processes on a seasonal time scale affect the bulk organic matter of these sediments via a modulation of grain size rather than creation or decay of organic matter.  相似文献   
3.
The D-CIXS Compact X-ray Spectrometer will provide high quality spectroscopic mapping of the Moon, the primary science target of the ESA SMART-1 mission. D-CIXS consists of a high throughput spectrometer, which will perform spatially localised X-ray fluorescence spectroscopy. It will also carry a solar monitor, to provide the direct calibration needed to produce a global map of absolute lunar elemental abundances, the first time this has been done. Thus it will achieve ground breaking science within a resource envelope far smaller than previously thought possible for this type of instrument, by exploiting two new technologies, swept charge devices and micro-structure collimators. The new technology does not require cold running, with its associated overheads to the spacecraft. At the same time it will demonstrate a radically novel approach to building a type of instrument essential for the BepiColombo mission and potential future planetary science targets.  相似文献   
4.
5.
6.
We present a new Very Large Array (VLA) image of Saturn, made from data taken in October 1998 at a wavelength of λ3.6 cm. The moderate ring opening angle (B≈15°) allows us to explore direct transmission of microwave photons through the A and C rings. We find a strong asymmetry of photons transmitted through the A ring, but not in the C ring, a new diagnostic of wake structure in the ring particles. We also find a weak asymmetry between east and west for the far side of the ansae. To facilitate quantitative comparison between dynamic models of the A ring and radio observations, we extend our Monte Carlo radiative transfer code (described in Dunn et al., 2002, Icarus 160, 132-160) to include idealized wakes. We show the idealized model can reproduce the properties of dynamic simulations in directly transmitted light. We examine the model behavior in directly transmitted and scattered light over a range of physical and geometric wake parameters. Finally, we present a wake model with a plausible set of physical parameters that quantitatively reproduces the observed intensity and asymmetry of the A ring both across the planet and in the ansae.  相似文献   
7.
    
  相似文献   
8.
9.
Benthic photosynthesis in submerged Wadden Sea intertidal flats   总被引:3,自引:1,他引:3  
In this study we compare benthic photosynthesis during inundation in coarse sand, fine sand, and mixed sediment (sand/mud) intertidal flats in the German Wadden Sea. In situ determinations of oxygen-, DIC- and nutrient fluxes in stirred benthic chamber incubations were combined with measurements of sedimentary chlorophyll, incident light intensity at the sediment surface and scalar irradiance within the sediment. During submergence, microphytobenthos was light limited at all study sites as indicated by rapid response of gross photosynthesis to increasing incident light at the sea floor. However, depth integrated scalar irradiance was 2 to 3 times higher in the sands than in the mud. Consequently, gross photosynthesis in the net autotrophic fine sand and coarse sand flats during inundation was on average 4 and 11 times higher than in the net heterotrophic mud flat, despite higher total chlorophyll concentration in mud. Benthic photosynthesis may be enhanced in intertidal sands during inundation due to: (1) higher light availability to the microphytobenthos in the sands compared to muds, (2) more efficient transport of photosynthesis-limiting solutes to the microalgae with pore water flows in the permeable sands, and (3) more active metabolic state and different life strategies of microphytobenthos inhabiting sands.  相似文献   
10.
The production and distribution of biological material in wind-driven coastal upwelling systems are of global importance, yet they remain poorly understood. Production is frequently presumed to be proportional to upwelling rate, yet high winds can lead to advective losses from continental shelves, where many species at higher trophic levels reside. An idealized mixed-layer conveyor (MLC) model of biological production from constant upwelling winds demonstrated previously that the amount of new production available to shelf species increased with upwelling at low winds, but declined at high winds [Botsford, L.W., Lawrence, C.A., Dever, E.P., Hastings, A., Largier, J., 2003. Wind strength and biological productivity in upwelling systems: an idealized study. Fisheries Oceanography 12, 245–259]. Here we analyze the response of this model to time-varying winds for parameter values and observed winds from the Wind Events and Shelf Transport (WEST) study region. We compare this response to the conventional view that the results of upwelling are proportional to upwelled volume. Most new production per volume upwelled available to shelf species occurs following rapid increases in shelf transit time due to decreases in wind (i.e. relaxations). However, on synoptic, event time-scales shelf production is positively correlated with upwelling rate. This is primarily due to the effect of synchronous periods of low values in these time series, paradoxically due to wind relaxations. On inter-annual time-scales, computing model production from wind forcing from 20 previous years shows that these synchronous periods of low values have little effect on correlations between upwelling and production. Comparison of model production from 20 years of wind data over a range of shelf widths shows that upwelling rate will predict biological production well only in locations where cross-shelf transit times are greater than the time required for phytoplankton or zooplankton production. For stronger mean winds (narrower shelves), annual production falls below the peak of constant wind prediction [Botsford et al., 2003. Wind strength and biological productivity in upwelling systems: an idealized study. Fisheries Oceanography 12, 245–259], then as winds increase further (shelves become narrower) production does not decline as steeply as the constant wind prediction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号