首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
海洋学   1篇
天文学   1篇
综合类   1篇
  2010年   1篇
  2009年   1篇
  1998年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
We have developed a near-field vector beam measurement system covering the range of frequencies from 385 to 500 GHz. The measurement set-up is capable of measurements with dynamic range exceeding 50 dB and amplitude and phase stability respectively of 0.1 dB/h and 1 degree/5 min at room temperature. Beam patterns of the ALMA band 8 corrugated horns and receiver optics block were measured at room temperature and lately compared with physical optics calculations obtained in the far-field. Both co-polar and cross-polar beam patterns of a qualification model of the ALMA band 8 cartridge cooled in a cartridge-test-cryostat have also been measured in the near-field as a detector of a submillimeter vector network analyzer. The measurements presented in this work refer to the lowest, middle and upper frequencies of band 8. The comparisons between software model and experimental measurements at these frequencies show good agreement down to ?30 dB for the main polarization component. The cross-polarization level of the beam propagating through the receiver optics block was also characterized. We found that a cross-polarization level better than ?28 dB can be achieved at all measured frequencies. The measured beam pattern of this receiver corresponds to efficiency of greater than 92% at the sub reflector (diameter of 750 mm) of the ALMA 12 m optics.  相似文献   
2.
Journal of Oceanology and Limnology -  相似文献   
3.
The empirical bay shape model proposed by Hsu and Evans in 1989 for predicting the static planform of a pocket beach is expanded to enable the calculation of three-dimensional beach changes on a pocket beach with a seawall. The original formulation was developed on the basis of a second-order regression analysis. Unlike the one-line model of shoreline changes, the model of Hsu and Evans does not require repeated calculations of the wave field and shoreline position, because it was derived on the assumption of null sediment movement within a pocket beach in static equilibrium, hence without the need of applying the continuity condition of total sand volume in the calculation. The expanded model proposed by the present authors satisfies the total sand budget on a pocket beach, by taking into account the concept of depth change due to longshore sand transport. Model tests were carried out and the new model was further applied to the beach changes at Kemigawa on the northeast of Tokyo Bay in Chiba Prefecture, as well as at Oarai in Ibaraki Prefecture, Japan. On both locations, seawall has been installed as countermeasures against beach erosion, where wave sheltering effect of the main breakwater and beach changes in front of the seawall has also been observed. With this expansion, the present model can be applied to predict the three-dimensional beach changes on a coast with seawall on a pocket beach.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号