首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
地球物理   2篇
海洋学   1篇
天文学   1篇
综合类   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2007年   1篇
  2003年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
1 IntroductionAnicecoreobtainedfrom polarglaciersoricesheetsisoneofthemostimportantarchivestoreconstructpaleoclimaticandpaleoatmosphericcondition .Informationonpale o environmentcanbeextractedfromicecoresaschemicaland/orphysicalsignals.Amongthechemicalsignals,heavymetalsarenotedassignalsofterrestrialenvironmentalchangeandanthropogenicpollution (e.g .Murozumietal.1 969;NgandPatterson 1 981 ;Hongetal.1 994) .SinceconcentrationsofmostofthemetalsinpolarsnowincentralGreen landareatorbelowthepptl…  相似文献   
2.
Snow algae in a 45.97-m-long ice core from the Tyndall Glacier (50°59′05″S, 73°31′12″W, 1756 m a.s.l.) in the Southern Patagonian Icefield were examined for potential use in ice core dating and estimation of the net accumulation rate. The core was subjected to visual stratigraphic observation and bulk density measurements in the field, and later to analyses of snow algal biomass, water isotopes (18O, D), and major dissolved ions. The ice core contained many algal cells that belonged to two species of snow algae growing in the snow near the surface: Chloromonas sp. and an unknown green algal species. Algal biomass and major dissolved ions (Na+, K+, Mg2+, Ca2+, Cl, SO42−) exhibited rapid decreases in the upper 3 m, probably owing to melt water elution and/or decomposition of algal cells. However, seasonal cycles were still found for the snow algal biomass, 18O, D-excess, and major ions, although the amplitudes of the cycles decreased with depth. Supposing that the layers with almost no snow algae were the winter layers without the melt water essential to algal growth, we estimated that the net accumulation rate at this location was 12.9 m a− 1 from winter 1998 to winter 1999, and 5.1 m from the beginning of winter to December 1999. These estimates are similar to the values estimated from the peaks of 18O (17.8 m a− 1 from summer 1998 to summer 1999 and 11.0 m from summer to December 1999) and those of D-excess (14.7 m a− 1 from fall 1998 to fall 1999 and 8.6 m a− 1 from fall to December 1999). These values are much higher than those obtained by past ice core studies in Patagonia, but are of the same order of magnitude as those predicted from various observations at ablation areas of Patagonian glaciers.  相似文献   
3.
Understanding of fluid behavior and gas distribution in the shallow subsurface are important considerations in gas hydrate formation and the global carbon cycle. Estimation of gas distribution based on reflection seismic surveys, however, is difficult because the boundary of a gas‐bearing zone is indistinct and not systematically defined. This study reports distinctive features related to gas‐hydrate distribution and possible fluid migration in high‐resolution 3D seismic‐reflection data from sediments of the eastern Nankai Trough. These features, here termed foldback reflectors (FBRs), descend in accordion shaped reflectors near the edges of bottom‐simulating reflectors (BSRs). FBRs generally correspond to lateral boundaries between two seismic facies, a ‘dimmed’ facies with relatively low amplitude and subdued high‐frequency components beneath the BSR and the contrasting facies around the BSR. The dimmed facies corresponds to areas of anomalously low velocity consistent with a small amount of free gas. FBR is mostly developed in well‐stratified formations in uplifted regions. Dip directions of the FBR appear to be restricted by orientation of the host formations. Edges of the FBR often correspond to high‐amplitude layers. Such occurrences of FBR suggest that regional uplift and layer‐parallel fluid migration are related to the formation of FBR as well as BSR.  相似文献   
4.
Multi-scale reflection seismic data, from deep-penetration to high-resolution, have been analyzed and integrated with near-surface geophysical and geochemical data to investigate the structures and gas hydrate system of the Formosa Ridge offshore of southwestern Taiwan. In 2007, dense and large chemosynthetic communities were discovered on top of the Formosa Ridge at water depth of 1125 m by the ROV Hyper-Dolphin. A continuous and strong BSR has been observed on seismic profiles from 300 to 500 ms two-way-travel-time below the seafloor of this ridge. Sedimentary strata of the Formosa Ridge are generally flat lying which suggests that this ridge was formed by submarine erosion processes of down-slope canyon development. In addition, some sediment waves and mass wasting features are present on the ridge. Beneath the cold seep site, a vertical blanking zone, or seismic chimney, is clearly observed on seismic profiles, and it is interpreted to be a fluid conduit. A thick low velocity zone beneath BSR suggests the presence of a gas reservoir there. This “gas reservoir” is shallower than the surrounding canyon floors along the ridge; therefore as warm methane-rich fluids inside the ridge migrate upward, sulfate carried by cold sea water can flow into the fluid system from both flanks of the ridge. This process may drive a fluid circulation system and the active cold seep site which emits both hydrogen sulfide and methane to feed the chemosynthetic communities.  相似文献   
5.
Abstract

The linear stability of a non-divergent barotropic parallel shear flow in a zonal and a non-zonal channel on the β plane was examined numerically. When the channel is non-zonal, the governing equation is slightly modified from the Orr-Sommerfeld equation. Numerical solutions were obtained by solving the discretized linear perturbation equation as an eigenvalue problem of a matrix. When the channel is zonal and lateral viscosity is neglected the problem is reduced to the ordinary barotropic instability problem described by Kuo's (1949) equation. The discrepancy between the stability properties of westward and eastward flows, which have been indicated by earlier studies, was reconfirmed. It has also been suggested that the unstable modes are closely related to the continuous modes discretized by a finite differential approximation. When the channel is non-zonal, the properties of unstable modes were quite different from those of the zonal problem in that: (1) The phase speed of the unstable modes can exceed the maximum value of the basic flow speed; (2) The unstable modes are not accompanied by their conjugate mode; and (3) The basic flow without an inflection point can be unstable. The dispersion relation and the spatial structure of the unstable modes suggested that, irrespective of the orientation of the channel, they have close relation to the neutral modes (Rossby channel modes) which are the solutions in the absence of a basic shear flow. The features mentioned above are not dependent on whether or not the flow velocity at the boundary is zero.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号