首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   25篇
  国内免费   4篇
测绘学   4篇
大气科学   28篇
地球物理   90篇
地质学   105篇
海洋学   24篇
天文学   49篇
综合类   3篇
自然地理   33篇
  2024年   2篇
  2023年   1篇
  2022年   3篇
  2021年   12篇
  2020年   17篇
  2019年   16篇
  2018年   13篇
  2017年   14篇
  2016年   18篇
  2015年   11篇
  2014年   16篇
  2013年   16篇
  2012年   15篇
  2011年   19篇
  2010年   15篇
  2009年   29篇
  2008年   16篇
  2007年   20篇
  2006年   11篇
  2005年   9篇
  2004年   8篇
  2003年   9篇
  2002年   7篇
  2001年   8篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1976年   2篇
排序方式: 共有336条查询结果,搜索用时 21 毫秒
1.
This study evaluated the spatial variability of streambed vertical hydraulic conductivity (Kv) in different stream morphologies in the Frenchman Creek Watershed, Western Nebraska, using different variogram models. Streambed Kv values were determined in situ using permeameter tests at 10 sites in Frenchman, Stinking Water and Spring Creeks during the dry season at baseflow conditions. Measurements were taken both in straight and meandering stream channels during a 5 day period at similar flow conditions. Each test site comprised of at least three transects and each transect comprised of at least three Kv measurements. Linear, Gaussian, exponential and spherical variogram models were used with Kriging gridding method for the 10 sites. As a goodness-of-fit statistic for the variogram models, cross-validation results showed differences in the median absolute deviation and the standard deviation of the cross-validation residuals. Results show that using the geometric means of the 10 sites for gridding performs better than using either all the Kv values from the 93 permeameter tests or 10 Kv values from the middle transects and centre permeameters. Incorporating both the spatial variability and the uncertainty involved in the measurement at a reach segment can yield more accurate grid results that can be useful in calibrating Kv at watershed or sub-watershed scales in distributed hydrological models.  相似文献   
2.
3.
4.
5.
We investigate the effect of the temperature–size rule upon zooids of the tropical American bryozoan Cupuladria exfragminis. Results show that mean zooid length, zooid width and zooid area vary significantly between clonal replicates of C. exfragminis kept under different controlled temperature conditions. Significantly larger zooids are produced during times of lowered water temperature that are comparable with the temperatures that occur during seasonal upwelling along the Pacific coast of Panama where the animal lives in abundance. Interpolation of data suggests that a drop of 1 °C causes a 5% increase in zooid size, and that almost all variation in zooid size in natural populations can be explained by temperature. Results are discussed in context of the potential use of zooid size variation in cupuladriid bryozoans to measure the strength of seasonal upwelling in ancient seas by analysing zooid size changes in fossil colonies. The technique of cloning cupuladriid colonies by fragmentation is also discussed with reference to its benefits in experimental studies where genotypes need to be controlled or replicated.  相似文献   
6.
Continuous culture of the coccolithophorid Emiliania huxleyi reveals that coccolith Sr/Ca ratios depend on temperature and growth rate. At a constant temperature of 18°C, coccolith Sr/Ca ratios increased nearly 15% as growth rate increased from 0.1 to 1.5 divisions per day and calcification rate increased from 1.5 to 50 pg calcite per cell per day. When temperature increased from 7 to 26°C, Sr/Ca ratios increased by more than 25% (i.e., 1%/1°C), although the range in growth and calcification rates was the same as for experiments at constant temperature. The temperature dependence of Sr/Ca ratios in coccoliths is consistent with that observed in planktonic foraminifera and abiogenic calcites, suggesting that it is controlled by thermodynamic processes. However, the positive correlation of coccolith Sr/Ca with temperature contrasts with field studies in the equatorial Pacific, where Sr/Ca ratios are highest at the locus of maximum upwelling and productivity despite depressed temperatures. This paradox may reflect different calcification rate effects between E. huxleyi and the other species dominating assemblages in the equatorial Pacific sediments, which may be resolved by new techniques for separation of monospecific coccolith samples from sediments. Models of crystal growth indicate that kinetic effects on Sr partitioning in calcite due to surface enrichment could explain the Sr/Ca variations observed in constant temperature experiments but not the larger amplitude calcification rate effects observed in equatorial Pacific sediments. Despite the dual influence of temperature and growth rate on coccolith Sr/Ca, coccolith Sr/Ca correlates with “b,” the slope of the dependence of carbon isotope fractionation in biomarkers (εp) on CO2(aq) at a range of growth rates and temperatures. Consequently, using coccolith Sr/Ca in combination with alkenone εp may improve paleo-CO2 determinations.  相似文献   
7.
Studies on transboundary water conflict and cooperation generally consider interstate relations over shared water resources as distinct from intrastate relations. While connections have been made between international water relations and regional relationships in general, it is conceivable that international water conflict and cooperation may also be influenced by domestic water events and vice versa. This paper seeks to investigate the dynamics of water interactions across geographic scale and their relationship to broader international affairs. The research approach involves the creation of an analytical framework for assessing possible linkages between external and internal interactions over freshwater resources. The framework is applied to three case studies – the Middle East, South Asia and Southern Africa – utilizing 'event data'. To validate the findings from the quantitative analyses, the results are compared with conventional qualitative understandings of water and overall relations in the three regions. The comparison demonstrates not only the efficacy of the analytical framework in general, but also highlights, at least in terms of the specific case studies selected, the disparate water dynamics across geographic regions and the importance of considering water events, both national and international, within larger political and historical contexts.  相似文献   
8.
Soil freeze–thaw events have important implications for water resources, flood risk, land productivity, and climate change. A property of these phenomena is the relationship between unfrozen water content and sub-freezing temperature, known as the soil freezing characteristic curve (SFC). It is documented that this relationship exhibits hysteretic behaviour when frozen soil thaws, leading to the definition of the soil thawing characteristic curve (STC). Although explanations have been given for SFC/STC hysteresis, the effect that ‘scale’ – particularly ‘measurement scale’ – may have on these curves has received little attention. The most commonly used measurement scale metric is the ‘support’, which is the spatial (or temporal) unit within which the measured variable is integrated or soil volume sampled. We show (a) measurement support can influence the range and shape of the SFC and (b) hysteresis can be attributed, in part, to the support and location of the measurements comprising the SFC/STC. We simulated lab measured temperature, volumetric water content (VWC), and permittivity from soil samples undergoing freeze–thaw transitions using Hydrus-1D and a modified Dobson permittivity model. To assess the effect of measurement support and location on SFC/STC, we masked the simulated temperature and VWC/permittivity extent to match the instrument's support and location. By creating a detailed simulation of the intra- and inter-support variability associated with the penetration of a freezing front, we demonstrate how measurement support and location can influence the temperature range over which water freezing events are captured. We show it is possible to simulate hysteresis in homogenous media with purely geometric considerations, suggesting that SFC/STC hysteresis may be more of an apparent phenomenon than mechanistically real. Lastly, we develop an understanding of how the location and support of soil temperature and VWC/permittivity measurements influence the temperature range over which water freezing events are captured.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号