首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
大气科学   1篇
自然地理   2篇
  2006年   1篇
  2001年   1篇
  1994年   1篇
排序方式: 共有3条查询结果,搜索用时 187 毫秒
1
1.
The development of the future atmospheric chemical composition is investigated with respect to NO y and O3 by means of the off‐line coupled dynamic‐chemical general circulation model ECHAM3/CHEM. Two time slice experiments have been performed for the years 1992 and 2015, which include changes in sea surface temperatures, greenhouse gas concentrations, emissions of CFCs, NO x and other species, i.e., the 2015 simulation accounts for changes in chemically relevant emissions and for a climate change and its impact on air chemistry. The 2015 simulation clearly shows a global increase in ozone except for large areas of the lower stratosphere, where no significant changes or even decreases in the ozone concentration are found. For a better understanding of the importance of (A) emissions like NO x and CFCs, (B) future changes of air temperature and water vapour concentration, and (C) other dynamical parameters, like precipitation and changes in the circulation, diabatic circulation, stratosphere‐troposphere‐exchange, the simulation of the future atmosphere has been performed stepwise. This method requires a climate‐chemistry model without interactive coupling of chemical species. Model results show that the direct effect of emissions (A) plays a major rôle for the composition of the future atmosphere, but they also clearly show that climate change (B and C) has a significant impact and strongly reduces the NO y and ozone concentration in the lower stratosphere.  相似文献   
2.
The effect of various erosional processes on the relief development of a carbonate platform margin is documented from outcrops of the Southern Alps, northern Italy, by the occurrence of truncation surfaces and redistribution of remobilized sediments. The periplatform depositional history, with periods of intensive submarine erosion along the north-western Trento plateau margin, is recorded by various carbonate deposits ranging in age from the Early Jurassic to Late Cretaceous with numerous gaps. The first Early Jurassic period of submarine erosion is marked by truncation and extensive tectonic fracturing of lower Liassic oolitic skeletal periplatform deposits. These are overlain by pelmicritic sediments of late Hettangian to Toarcian age. The second period of submarine erosion during the late Early Jurassic resulted in almost complete truncation of the pelmicritic unit. Crinoidal to oolitic periplatform carbonate sands were subsequently deposited along the carbonate margin until the Aalenian/Bajocian. The third truncation surface was produced by partial current erosion of the crinoidal to oolitic periplatform deposits during the late Bajocian to Callovian. The fourth, and most prominent, truncation surface was produced by erosion during the Early Cretaceous cutting down from Aptian/Albian pelagic units to Toarcian periplatform deposits. The resulting submarine relief was completely buried during the late Maastrichtian by onlapping pelagic sediments. The documentation of the depositional history during the Late Mesozoic of the north-western Trento plateau pinpoints the main mechanisms responsible for the relief of the drowned carbonate platform margin. Extensional tectonic activity during differential subsidence and current-induced erosional truncation, followed by gravitational downslope mass transport and rapid pelagic burial mainly determined the morphology of the drowned carbonate platform margin.  相似文献   
3.
Commentary on the Special Section on the Indian Ocean Tsunami   总被引:1,自引:0,他引:1  
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号