首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
测绘学   1篇
地球物理   5篇
地质学   11篇
海洋学   1篇
自然地理   1篇
  2021年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2011年   1篇
  2009年   5篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
The present investigation focused on the numerical simulation of the gravity currents of non-Newtonian fluids by means of the incompressible smoothed particle hydrodynamics (ISPH) approach. Firstly, to solve the rheological properties of the non-Newtonian Bingham model by ISPH method, the multi-viscodensity approach has been introduced. Then, this methodology has been used to simulate the annular viscometer and landslide deformation test cases. Through simulating these test cases, the viscoplastic behavior of the non-Newtonian viscosity and propagation of tsunami waves due to underwater landslide movement have been observed. Numerical results were in good agreement with the theoretical and experimental studies and showed that this methodology can be used to investigate precisely the generation and propagation of tsunami surface waves.  相似文献   
2.
3.
4.
This article draws on the case of #mysafetyselfie as an example of how social media can be used to highlight the social and spatial factors affecting women's experience with safety. In particular, I consider the ways in which media technology mediates embodied practice through an examination of the selfie as a form of relational place making. In the first section, I situate #mysafetyselfie as a node along a continuum of sociospatial work by Jay Pitter—the project's initiator—stemming from her personal and professional engagement with safety. I then draw from mobile interface theory to argue for the selfie as a practice of embodied implacement, which situates experience as contextually informed. In the next section, I conduct a close reading of three safety selfies from the project, in which safety is framed by the subject in intelligent and creative ways. I conclude by reflecting on the outcomes of #mysafetyselfie and the ethical responsibility of curating stories both offline and online.  相似文献   
5.
Using 4.0 and greater magnitude earthquakes which occurred between 1 January 1900 and 31 Dec 2008 in the Sinop province of Turkey this study presents a seismic hazard analysis based on the probabilistic and statistical methods. According to the earthquake zonation map, Sinop is divided into first, second, third and fourth-degree earthquake regions. Our study area covered the coordinates between 40.66°– 42.82°N and 32.20°– 36.55°E. The different magnitudes of the earthquakes during the last 108 years recorded on varied scales were converted to a common scale (Mw). The earthquake catalog was then recompiled to evaluate the potential seismic sources in the aforesaid province. Using the attenuation relationships given by Boore et al. (1997) and Kalkan and Gülkan (2004), the largest ground accelerations corresponding to a recurrence period of 475 years are found to be 0.14 g for bedrock at the central district. Comparing the seismic hazard curves, we show the spatial variations of seismic hazard potential in this province, enumerating the recurrence period in the order of 475 years.  相似文献   
6.
The main shock of Bingöl earthquake (M W = 6.4) recorded by six accelerometers in the area occurred at 03:27 local time on May 1, 2003. The largest acceleration value of north–south component was recorded as 545.5 cm/s2 at the nearest station which it is 12 km away from the epicenter of earthquake. Especially, 0.15 s short period was observed when high spectral acceleration value occurred. An acceleration value greater than 50 gal was recorded at the BNG (Bingöl) station and structural damage occurred within 6.5 s was very important for the near source and strong ground motion seismology. The recorded peak acceleration values were greater than the estimated empirical acceleration values. However, the structural damage was not as high and widespread as expected. This occurrence was explained by considering the factors of earthquake source, frequency content, effective duration, effective acceleration value, local soil conditions, rupture direction and attenuation.  相似文献   
7.
8.
9.
The nature and subsurface structure of the slip surface of a landslide was studied on the basis of geochemical analyses and 2-D electrical resistivity tomography (ERT) survey. Head scarp and lateral slip surfaces of the landslide marked by clear slickensided shear planes were composed of the average amounts of clayey silt (32.5%) and sand (67.5%). Energy dispersive X-ray spectroscopy (EDX) data revealed the enrichment of Si (23.24%), Fe (12.2%), Al (9.51%) and C (8.34%) in the elemental composition of the disturbed slip surface. From X-ray diffractometry (XRD) data, six main clay types were determined, such as Volkonskoite, Halloysite, Ferrosilite, Saponite, Illite and Nontronite. The ERT survey displayed that the landslide developed as a reactivation on the upper part of an old landslide body.  相似文献   
10.
Nearly 108-km lengths of Mersin shores are composed of natural beaches. The region is located between major tourist centers. In the future, this region is thought to be built with a great number of tourist facilities. Turkey’s largest seaport, Ata? refinery (Mersin International Port) is located in Mersin. Recently, Mersin is becoming of great importance to Turkey as the latter plans to construct its second nuclear power plant in the region. Therefore, as nuclear power plants are built to withstand environmental hazards, it is very important to analyze the seismic risk of the areas where the nuclear power plant will be constructed. The region is located between the East Anatolian Fault Zone and Center Anatolian Fault Zone. Based on the Turkey Earthquake Regions Map, Mersin is divided into second-, third-, and fourth-degree earthquake regions. In this study, we sampled earthquakes of magnitude of 4.0 or greater between 01 Jan 1900 and 31 Dec 2010 in the area; seismic hazard of Mersin province was estimated with probabilistic and statistical methods. The study area was selected as the coordinates between 36.03° and 37.42° North and 32.57° and 35.16° East. On the study area, different scaled magnitude values in the last 110 years converted to a common scale (Mw) and earthquake catalog was re-compiled and also seismic sources that may affect the area was determined. In this study, the seismic hazards of the region were obtained using the methods of probability and statistics. This study used three different attenuation relationships. Using the attenuation relationships suggested by Boore et al. (Seismol Res Lett 68(1):128–153, 1997) and Kalkan and Gülkan (Earthquake Spectra 20:1111–1138, 2004), the largest ground acceleration which corresponds to a recurrence period of 475 years was found as 0.08–0.09 g and Akkar and Ça?nan (Bull Seismol Soc Am 100 6:2978–2995, 2010), 0.04 g for bedrock at the central district. When computing for seismic hazard curves, Mut district appears to have a greater seismic hazard compared with other districts. Moreover, according to the attenuation relationships, seismic hazard curves corresponding to a recurrence period of 475 years were obtained for the Mersin Central, Mut, Erdemli, Çaml?yayla, and Tarsus districts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号