首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
地球物理   1篇
天文学   2篇
自然地理   1篇
  2015年   1篇
  2010年   1篇
  2009年   1篇
  1999年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression‐based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least‐squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least‐squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least‐squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p < 0.05) bias in estimated parameters and model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.  相似文献   
2.
Arecibo (2380 MHz, 12.6 cm) and Goldstone (8560 MHz, 3.5 cm) delay-Doppler radar images obtained in July and August of 2000 reveal that 4486 Mithra is an irregular, significantly bifurcated object, with a central valley ∼380 m deep and a long axis potentially exceeding 2 km. With its bimodal appearance, Mithra is a strong candidate for a contact binary asteroid. Sequences of Goldstone images spanning up to 3 h per day show very little rotation and establish that Mithra is an unusually slow rotator. We used Goldstone and Arecibo data to estimate Mithra’s 3D shape and spin state. We obtain prograde (λ = 337°, β = 19°) and retrograde (λ = 154°, β = −19°) models that give comparable fits, have very similar shapes roughly resembling an hourglass, and have a rotation period of 67.5 ± 6.0 h. The dimensions of these two models are very similar; for the prograde solution the maximum dimensions are X = 2.35 ± 0.15 km, Y = 1.65 ± 0.10 km, Z = 1.44 ± 0.10 km. Dynamical analysis of our models suggests that in the past, Mithra most likely went through a period of even slower rotation with its obliquity close to 90°. The spin rate is predicted to be increasing due to thermal torque (YORP), while the obliquity, which is currently +68° and +106° for the prograde and retrograde models, respectively, is predicted to move away from 90°.  相似文献   
3.
Topographic change in regions of active deformation is a function of rates of uplift and denudation. The rate of topographic development and change of an actively uplifting mountain range, the Santa Monica Mountains, southern California, was assessed using landscape attributes of the present topography, uplift rates and denudation rates. Landscape features were characterized through analysis of a digital elevation model (DEM). Uplift rates at time scales ranging from 104 to 106 years were constrained with geological cross-sections and published estimates. Denudation rate was determined from sediment yield data from debris basins in southern California and from the relief of rivers set into geomorphic surfaces of known age. First-order morphology of the Santa Monica Mountains is set by large-scale along-strike variations in structural geometry. Drainage spacing, drainage geometry and to a lesser extent relief are controlled by bedrock strength. Dissection of the range flanks and position of the principal drainage divide are modulated by structural asymmetry and differences in structural relief across the range. Topographic and catchment-scale relief are ≈300–900 m. Mean denudation rate derived from the sediment yield data and river incision is 0.5±0.3 mm yr?1. Uplift rate across the south flank of the range is ≈0.5±0.4 mm yr?1 and across the north flank is 0.24±0.12 mm yr?1. At least 1.6–2.7 Myr is required to create either the present topographic or the catchment-scale relief based on either the mean rates of denudation or uplift. Although the landscape has had sufficient time to achieve a steady-state form, comparison of the time-scale of uplift and denudation rate variation with probable landscape response times implies the present topography does not represent the steady-state form.  相似文献   
4.
Near-Earth Asteroid 4660 Nereus has been identified as a potential spacecraft target since its 1982 discovery because of the low delta-V required for a spacecraft rendezvous. However, surprisingly little is known about its physical characteristics. Here we report Arecibo (S-band, 2380-MHz, 13-cm) and Goldstone (X-band, 8560-MHz, 3.5-cm) radar observations of Nereus during its 2002 close approach. Analysis of an extensive dataset of delay-Doppler images and continuous wave (CW) spectra yields a model that resembles an ellipsoid with principal axis dimensions X=510±20 m, Y=330±20 m and . The pole direction is approximately located at ecliptic pole longitude and latitude of λ=+25°, β=+80° with the uncertainty radius of 10°. Our modeling yields a refined rotation period of 15.16±0.04 h. Nereus has a circular polarization (SC/OC) ratio of 0.74±0.08, which implies substantial near-surface centimeter-to-decimeter scale roughness. Dynamical analysis of our model suggests that YORP alteration of the rotation period may become evident within a few years. Nereus has two stable synchronous orbits where natural material may remain in orbit, while most asteroids observed to date do not have such stable synchronous orbits. We also find that spacecraft orbits about Nereus are feasible.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号