首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   4篇
自然地理   1篇
  2020年   1篇
  2018年   2篇
  2016年   2篇
排序方式: 共有5条查询结果,搜索用时 171 毫秒
1
1.
Textural variational pattern of economic and accessible Quaternary aquifer repositories and its conductivity in the south-eastern Nigeria have been assessed through the integration of vertical electrical sounding and laboratory measurements. The results have shown the lithological attributes, pore-water and amount of residual clay minerals in the assumed clean sand; mechanism of charge fixation at the fluid - surface interface; intricate geometry of pores and pore channels; formation’s ability to transmit pore-water and cation exchange capacity.The connections of electrical and hydraulic properties and their distributions have been established. The average interface conductivity contributed by residual clay minerals in assumed clean sands of the aquifer repositories in the study area have been estimated as 30µS/m. Intrinsic average porosity and formation factor have been respectively deduced as 12% and 14.75. Comparing the simulated aquifer formation factor obtained from the observed porosity data with the observed aquifer formation factor, indicates the that study area has 0.5 ≤ a ≤ 0.8 pore geometry factor and 1.5 ≤ m ≤ 2.0 cementation factor as the best fitting values. The interrelations between aquifer parameters have been established through different plots and the aquifer have been empirically proved to be associated with residual clay minerals as the interface conductivity Cq is not equal to zero. The wide ranges of parameters estimated are an indication of variations in grain size. The estimated intrinsic average porosity, formation factor and the average BQv are viable in characterizing the aquifer flow dynamics and contaminant modelling in the associated aquifer sands For low pore geometry factors a (0.2) and low cementation factor m (0.5) the formation factor remains fairly constant. However, marked variability is noticed at higher a (1.0) and m (2.5). Despite the observed variability in formation factors at the indicated porosities, the spatial or geometrical spread of the formation factor remains unchanged in the aquifer units. The Tables for geoelectric and petrophysical parameters and the associated mathematical models generated in this study can be used for groundwater contaminant modelling and simulation of pore space parameters with reasonable accuracy.  相似文献   
2.
The presence of fractures in reservoir rocks causes scattering of seismic wave energy. In this paper, we utilize the finite-difference modelling technique to study these scattering effects to gain more insights into the effects and assess the validity of using anisotropic wave scattering energy as a diagnostic tool to characterize fractured hydrocarbon reservoirs. We use a simplified fractured reservoir model with four horizontal layers with a fractured-layer as the third layer. The fractures are represented by grid cells containing equivalent anisotropic medium by the use of the linear slip equivalent model. Our results show that the scattered energy, quantified through estimates of the seismic quality factor (Q) is anisotropic, exhibiting a characteristic elliptical (\(\cos 2\theta \)) variations relative to the survey azimuth angle \(\theta \). The fracture normal is inferred from the minor axis of the Q ellipse. This direction correlates with the direction of maximum wave scattering. Minimum wave scattering occurs in the fracture strike direction inferred from the major axis of the Q ellipse. These results provide more complete insights into anisotropic wave scattering characteristics in fractured media and thus, validate the practical utility of using anisotropic attenuation attribute as an additional diagnostic tool for delineation of fracture properties from seismic data.  相似文献   
3.
Itu Local Government Area is prone to groundwater contamination occasioned by saltwater due to the geographical location and the aquifer unit inter-transmissibility between the communicating/interconnected pores of the water-bearing units. This inter-transmissibility causes the continuous distribution of contamination among interconnected aquifer repositories. The study integrated the surface electric mapping and laboratory analysis of geologic samples and their corresponding water samples in estimating the transmissibility-dependent petrophysical parameters. The functional relationships between parameters have been determined. Maps of the spatial distribution of the estimated geohydraulic parameters have been drawn. Quantitative links of measured parameters to transmissibility have established. The resulting inferences based on the indices or magnitudes of the parameters measured helped in delineating the directions of water transmission within and across the hydrogeological units under study. The inferred result of permeability serves as a guide in identifying the southern zone of the area under study as having relatively reduced hydraulic pressure gradient differential, while the northern region has on the average, high hydraulic gradient differentials. The results of directions of inter-transmissibility of hydrodynamic properties in aquifer units are promising and capable of increasing the depth of knowledge on groundwater contamination and hence provide substantial input parameters that can enhance groundwater modelling within and near the study location.  相似文献   
4.
Natural Resources Research - Aquifer geohydraulic properties such as hydraulic conductivity and transmissivity are very vital parameters in groundwater resource management and exploitation. In this...  相似文献   
5.
The task involved in the interpretation of Vertical Electrical Sounding (VES) data is how to get unique results in the absence/limited number of borehole information, which is usually limited to information on the spot. Geological and geochemical mapping of electrical properties are usually limited to direct observations on the surface and therefore, conclusions and extrapolations that can be drawn about the system electrical characteristics and possible underlying structures may be masked as geology changes with positions. The electrical resistivity study pedotransfer functions (PTFs) have been linked with the electromagnetic (EM) resolved PTFs at chosen frequencies of skin/penetration depth corresponding to the VES resolved investigation depth in order to determine the local geological attributes of hydrogeological repository in the coastal formation dominated with fine sand. The illustrative application of effective skin depth depicts that effective skin depth has direct relation with the EM response of the local source over the layered earth and thus, can be linked to the direct current earth response functions as an aid for estimating the optimum depth and electrical parameters through comparative analysis. Though the VES and EM resolved depths of investigation at appropriate effective and theoretical frequencies have wide gaps, diagnostic relations characterising the subsurface depth of interest have been established. The determining factors of skin effect have been found to include frequency/period, resistivity/conductivity, absorption/attenuation coefficient and energy loss factor. The novel diagnostic relations and their corresponding constants between 1-D resistivity data and EM skin depth are robust PTFs necessary for checking the accuracy associated with the non-unique interpretations that characterise the 1-D resistivity data, mostly when lithostratigraphic data are not available.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号