首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   3篇
地质学   4篇
自然地理   1篇
  2018年   1篇
  2016年   1篇
  2008年   3篇
  2007年   1篇
  2002年   1篇
  1978年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
Summary Volcanic rocks on Ponza Island (Tyrrhenian Sea, central Italy) consist of Pliocene submarine rhyolites and Pleistocene subaerial trachyte and comendite lavas. Chemical variations and the homogeneous Sr and Nd isotopic signatures within the analyzed Pliocene rocks are ascribed to crystal fractionation. The absolute isotopic values, however, indicate the important role of a crustal component in the origin of these magmas. The very high-silica rocks were probably derived from a superimposed mechanism which may have been connected to the ascent of hydrothermal magmatic fluids. Compositional and 87Sr/86Sr variations at constant 143Nd/144Nd values in the Pleistocene rocks are likely due to fractionation of the observed phenocryst assemblage, possibly coupled with minor crustal interaction. These processes, however, cannot account for the extreme enrichment of many incompatible trace elements in the comendites. Some evidence suggests the influence of a halogen- and/or CO2-rich volatile phase. Received February 17, 2000; revised version accepted November 29, 2000  相似文献   
2.
Equilibrium and disequilibrium degassing of a volatile phase from a magma of K-phonolitic composition was investigated to assess its behavior upon ascent. Decompression experiments were conducted in Ar-pressurized externally heated pressure vessels at superliquidus temperature (1050 °C), in the pressure range 10–200 MPa using pure water as fluid phase. All experiments were equilibrated at 200 MPa and then decompressed to lower pressures with rates varying from 0.0028 to 4.8 MPa/s. Isobaric saturation experiments were performed at the same temperature and at 900–950 °C to determine the equilibrium water solubility in the pressure range 30–250 MPa. The glasses obtained from decompression experiments were analyzed for their dissolved water content, vesicularity and bubble size distribution. All decompressed samples presented a first event of bubble nucleation at the capsule–melt interface. Homogeneous bubble nucleation in the melt only occurred in fast-decompressed experiments (4.8 and 1.7 MPa/s), for ΔP ≅ 100 MPa. For these decompression rates high water over-saturations were maintained until a rapid exsolution was triggered at ΔP > 150 MPa. For slower rates (0.0028, 0.024, 0.17 MPa/s) the degassing of the melt took place by diffusive growth of the bubbles nucleating at the capsule–melt interface. This process sensibly reduced water over-saturation in the melt, preventing homogeneous nucleation to occur. For decompression rates of 0.024 and 0.17 MPa/s low water over-saturations were attained in the melt, gradually declining toward equilibrium concentrations at low pressures. A near-equilibrium degassing path was observed for a decompression rate of 0.0028 MPa/s. Experimental data combined with natural pumice textures suggest that both homogeneous and heterogeneous bubble nucleations occurred in the phonolitic magma during the AD 79 Vesuvius plinian event. Homogeneous bubble nucleation probably occurred at a depth of ∼ 3 km, in response to a fast decompression of the magma during the ascent.  相似文献   
3.
In this paper, we document the evolution of the emergent Panarea dome in the Aeolian islands (Southern Italy), placing particular emphasis on the reconstruction of the explosive events that occurred during the final stage of its evolution. Two main pyroclastic successions exposing fall deposits with different compositions have been studied into detail: the andesitic Palisi succession and the basaltic Punta Falcone succession. The close-in-time deposition of the two successions, the dispersal area and grain-size distribution of the deposits account for their attribution to vents located in the western sector of the present island and erupting almost contemporaneously. Vents could have been aligned along NNE-trending regional fracture systems controlling the western flank of the dome and possibly its collapse. Laboratory analyses have been devoted to the characterization of the products of the two successions that have been ascribed to vulcanian- and to strombolian-type eruptions respectively. The vulcanian eruption started with a vent-clearing phase that occurred by sudden decompression of a pressurized magma producing ballistic bombs and a surge blast and the development of a vulcanian plume. Vulcanian activity was almost contemporaneous to strombolian-type fall-out eruptions. The coeval occurrence of basaltic and andesitic eruptions from close vents and the presence of magmatic basaltic enclaves in the final dacitic lava lobe of the dome allow us to speculate that the intrusion of a basaltic dyke played a major role in triggering explosive eruptions. The final explosive episodes may have been caused by extensional tectonics fracturing the roof of a zoned shallow magma chamber or by the intrusion of a new basaltic magma into a more acidic and shallow reservoir. Intrusion most likely occurred through the injection of dykes along the western cliff of the present Panarea Island inducing the collapse of the western sector of the dome.  相似文献   
4.
The development of location-aware technologies, such as smartphones, raises serious questions regarding locational privacy and the ethical use of geographic data. The degree to which these concepts are taught in undergraduate geographic information science (GISci) courses is unknown. A survey of GISci educators shows that issues of privacy and ethics are important in a GISci education. However, a large proportion of GISci educators are not concerned about the loss of locational privacy and many do not devote classes to the subject. Those not teaching the subject cite lack of course time and the need for more information.  相似文献   
5.
The P-T path of magma associated with the 1944 Vesuvius eruption has been outlined on the basis of probe mineralogy and the relationships between the crystallising phases. Equilibrium P-T values, obtained from the reactions:
  1. CaMgSi2O6(liq) = CaMgSi2O6(cpx)
  2. NaAlSi3O8 (liq) = NaAlSi3O8 (plag)
  3. CaAl2Si2O8 (plag)=CaAl2SiO6(cpx)+SiO2(liq) have been established for three intracrustal crystallisation stages: I) 8.0 kbar and 1255 °C; II) 4.0 kbar and 1178 °C; III) 0.5 kbar and 1105 °C.
The H2O content in the magma has been estimated from an experimental calibration of \(a_{^{CaMgSi_2 O_6 } }^{liq}\) as a function of \(X_{H_2 O}^{liq}\) at P tot = 2 kbar. The estimated water contents of the magma for the three stages, I) 0.7%; II) 0.9%; III) 1.1%, are consistent with the pattern of activity of the 1944 Vesuvius eruption and with the relationship between the lavas. The shallow depth of H2O-saturation of the magma, 0.24 kbar at 1100 °C, is consistent with the eruption sequence of lava flows followed by lava fountain activity.  相似文献   
6.
Temperate grasslands are a highly threatened global biome. Complicating management and conservation strategy development, modern grasslands can be difficult to characterize across landscapes since they range from native and semi-native to completely non-native species compositions such as those found in heavily managed pastures. Similar to methods used to differentiate C3 and C4 grasses, we investigate the ability of using temporal variations in growth characteristics as an alternative pathway to predicting native versus introduced species composition across grassland landscapes. To do this, we conducted an exploratory analysis using a time-series of Normalized Difference Vegetation Index values as a measure of vegetation greenness with Landsat 5 TM imagery across a growing season and performed an unsupervised classification. Results from the classification were compared with field observation to determine if we can differentiate between native and introduced grassland types in the Northwest Glaciated Plains subecoregion of northeastern Montana. Our results indicated that we predicted grassland cover with 81% accuracy within our 200 km2 study area and 71% accuracy in our 5000 km2 secondary study area. Further extrapolation of our methodology, combined with the refinement of vegetation indices of time-series imagery, classification algorithms and the availability of data from planned Landsat and Sentinel missions, may provide the spatial detail necessary to improve grassland monitoring and rangeland management over large areas.  相似文献   
7.
The Alban Hills ultrapotassic volcanic district is one of the main districts emplaced during Quaternary time along the Tyrrhenian margin of Italy. Alban Hills lava flows and scoria clasts are made up essentially of clinopyroxenes and leucites and their chemical composition is mostly K-foiditic. Differentiated products (MgO < 3 wt.%) are characterised by low SiO2 concentration (< 50 wt.%) and geochemical features indicate that this unique differentiation trend is driven by crystal fractionation plus carbonate crust interaction. Notably, the Alban Hills Volcanic District was emplaced into thick limestone units. With the aim of constraining the magmatic differentiation, we performed experiments on the Alban Hills parental composition (plagioclase-free phono-tephrite) under anhydrous, hydrous, and hydrous-carbonated conditions. Experiments were carried out at 1 atm, 0.5 GPa and 1 GPa, temperatures ranging from 1050 to 1300 °C, and H2O and CaCO3 in the starting material up to 2 and 7 wt.%, respectively. The experiments performed at 0.5 GPa are the most representative of the Alban Hills plumbing system. Clinopyroxene and leucite are the main phases occurring under all the investigated conditions and the liquidus phases. Nevertheless, our experimental results demonstrate that the occurrence of CaCO3 in the starting material strongly affects phase relations. Experiments performed under hydrous conditions crystallize magnetite and phlogopite at relatively high temperature. This early crystallization drives the glass composition towards a silica enrichment, resulting in a differentiation trend moving from phono-tephritic (Alban Hills parental composition) to phonolitic compositions. This is in contrast with micro-textural evidence showing late crystallization of magnetite and phlogopite in the natural products and with the composition of the juvenile products. On the contrary, in the CaCO3-bearing experiments (i.e., simulating magma–carbonate interaction) the magnetite and phlogopite stability fields are strongly reduced. As a consequence, the melt differentiation is mainly controlled by the cotectic crystallization of clinopyroxene and leucite, resulting in a differentiation trend moving towards K-foiditic compositions. These experimental results are in agreement with micro-textural features and chemical compositions of Alban Hills natural products and with the magmatic differentiation model inferred by geochemical data. Magma–carbonate interaction is not a rare process and its occurrence has been demonstrated for different plumbing systems. However, the uniqueness of the Alban Hills liquid line of descent suggests that the efficacy of the carbonate contamination process is controlled by different factors, the dynamics of the plumbing system being one of the most important.  相似文献   
8.
Ash-rich tephra layers interbedded in the pyroclastic successions of Panarea island (Aeolian archipelago, Southern Italy) have been analyzed and related to their original volcanic sources. One of these tephra layers is particularly important as it can be correlated by its chemical and morphoscopic characteristics to the explosive activity of Somma-Vesuvio. Correlation with the Pomici di Base eruption, that is considered one of the largest explosive events causing the demolition of the Somma stratovolcano, seems the most probable. The occurrence on Panarea island of fine ashes related to this eruption is of great importance for several reasons: 1) it allows to better constrain the time stratigraphy of the Panarea volcano; 2) it provides a useful tool for tephrochronological studies in southern Italy and finally 3) it allows to improve our knowledge on the distribution of the products of the Pomici di Base eruption giving new insights on the dispersion trajectories of fine ashes from plinian plumes. Other exotic tephra layers interbedded in the Panarea pyroclastic successions have also been found. Chemical and sedimentological characteristics of these layers allow their correlation with local vents from the Aeolian Islands thus constraining the late explosive activity of Panarea dome.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号