首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   1篇
自然地理   3篇
  2009年   1篇
  2003年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Sequence stratigraphy, based on climatic, tectonic, and base level parameters, can be used to understand carbonate sedimentation in continental basins. The uppermost continental fill of the Guadix Basin (Betic Cordillera), containing both siliciclastics and carbonates, is investigated here. In its central sector a thick succession of fluvio-lacustrine sediments appear, hosting several important Pliocene and Pleistocene macrovertebrate sites (Fonelas Project). The need to characterize the stratigraphic and sedimentologic context of these important paleontologic sites has lead to litho-, magneto- and biostratigraphic studies. These data, together with the sedimentologic analysis of the Pliocene and Pleistocene siliciclastic and carbonate successions, establish a sedimentary model for the fluvio-lacustrine sedimentation of the two last stages of sedimentation in the Guadix Basin (Units V and VI). Unit V comprises mostly fluvial siliciclastic sediments with less abundant carbonate beds interpreted as floodplain lakes or ponds. The latter, Unit VI, is dominated by vertically-stacked, carbonate palustrine successions. Using two pre-existent continental stratigraphic models, the influence of climate, tectonism, and stratigraphic base level during the last 3.5 Ma on the sedimentary evolution of the fluvio-lacustrine system in the Guadix Basin, especially the carbonate sedimentation patterns, is outlined.  相似文献   
2.
3.
The Upper Freeport Formation (Upper Allegheny Group, Middle Pennsylvanian) is one of the earliest non-marine cyclothems in the Appalachian Basin and contains carbonates, siliciclastics, and coal. A detailed facies analyses of 25 cores from the Upper Freeport Limestone in western Pennsylvania (Armstrong and Indiana Counties) identified four facies associations containing thirteen separate facies: rudstone-limestone (Association A), rudstone-laminated limestone (Association B), laminated limestone (Association C), and coal — siliciclastics (Association D). We interpreted them, respectively, as shallow, high energy lacustrine margin (A); littoral to sublittoral lacustrine (B); offshore lake (C); and vegetated swamp and marsh (D). The depositional environment is envisaged as an anastomosed channel system surrounded by extensive wetlands containing adjacent densely vegetated swamp and marsh areas and freshwater, carbonate-producing lakes.Lakes developed in the topographic lows of the alluvial plain, protected and filtered from siliciclastic deposition by vegetated swamps. These lakes were small in size (several square km), shallow, and stratified, as indicated by the abundance of laminated facies. They were hydrologically open, and interconnected by surface and ground waters. Carbonate production in this lacustrine system was not triggered by evaporative concentration but by biogenic algal production. Carbonates were continually being recycled, both physicochemically and biologically, within the depositional system. Various early diagenetic processes, including brecciation, pedogenesis and recrystallization, masked original evidence for transport mode. The Upper Freeport Limestone contains numerous features of palustrine carbonates, and provides a case study for one end-member of freshwater carbonate models, characterized by a very short period of subaerial exposure. Small-scale climatic changes or autocyclic processes such as small topographic differences, changes in local drainage patterns, and fluvial dynamics may have controlled Upper Freeport lake level changes.Facies analysis does not support a climate forcing as a control for cyclothem development of non-marine sequences during the Pennsylvanian. Tectonic and autocyclic processes better explain the evolution of these wetland (lacustrine/alluvial) systems with its associated coal formation.This is the seventh paper in a series of papers published in this issue on Climatic and Tectonic Rhythms in Lake Deposits.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号