首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
大气科学   3篇
地球物理   13篇
地质学   6篇
天文学   1篇
自然地理   2篇
  2012年   2篇
  2009年   2篇
  2007年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1989年   3篇
  1986年   1篇
  1985年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
2.
Tephra fallout from the A-1 (March 29, 0532 UT), B (April 4, 0135 UT), and C (April 4, 1122 UT) 1982 explosive eruptions of El Chichon produced three tephra fall deposits over southeastern Mexico. Bidirectional spreading of eruption plumes, as documented by satellite images, was due to a combination of tropospheric and stratospheric transport, with heaviest deposition of tephra from the ENE tropospheric lobes. Maximum column heights for the eruptions of 27, 32, and 29 km, respectively, have been determined by comparing maximum lithic-clast dispersal in the deposits with predicted lithic isopleths based on a theoretical model of pyroclast fallout from eruption columns. These column heights suggest peak mass eruption rates of 1.1 × 108, 1.9 × 108, and 1.3 × 108 kg/s. Maximum column heights and mass eruption rates occured early in each event based on the normal size grading of the fall deposits. Sequential satellite images of plume transport and the production of a large stratospheric aerosol plume indicate that the eruption columns were sustained at stratospheric altitudes for a significant portion of their duration. New estimates of tephra fall volume based on integration of isopach area and thickness yield a total volume of 2.19 km3 (1.09 km3 DRE, dense rock equivalent) or roughly twice the amount of the deposit mapped on the ground. Up to one-half of the erupted mass was therefore deposited elsewhere as highly dispersed tephra.  相似文献   
3.
Downslope windstorms at Kvísker in Southeast Iceland are explored using a mesoscale model, observations and numerical analysis of the atmosphere. Two different types of gravity-wave induced windstorms are identified. At the surface, their main difference is in the horizontal extent of the lee-side accelerated flow. Type S (Short) is a westerly windstorm, which is confined to the lee-slopes of Mount ?r?faj?kull, while a Type E (Extended) windstorm occurs in the northerly flow and is not confined to the lee-slopes but continues some distance downstream of the mountain. The Type S windstorm may be characterized as a more pure gravity-wave generated windstorm than the Type E windstorm which bears a greater resemblance to local flow acceleration described by hydraulic theory. The low-level flow in the Type E windstorm is of arctic origin and close to neutral with an inversion well above the mountain top level. At middle tropospheric levels there is a reverse vertical windshear. The Type S windstorm occurs in airmasses of southerly origin. It also has a well-mixed, but a shallower boundary-layer than the Type E windstorms. Aloft, the winds increase with height and there is an amplified gravity wave. Climate projections indicate a possible decrease in windstorm frequency up to the year 2050.  相似文献   
4.
5.
Divergent plate boundaries, such as the one crossing Iceland, are characterized by a high density of subparallel volcanic fissures and tectonic fractures, collectively termed rift zones, or fissure swarms when extending from a specific volcano. Volcanic fissures and tectonic fractures in the fissure swarms are formed during rifting events, when magma intrudes fractures to form dikes and even feeds fissure eruptions. We mapped volcanic fissures and tectonic fractures in a part of the divergent plate boundary in northern Iceland. The study area is ~1,800 km2, located within and north of the Askja central volcano. The style of fractures changes with distance from Askja. Close to Askja the swarm is dominated by eruptive fissures. The proportion of tectonic fractures gets larger with distance from Askja. This may indicate that magma pressure is generally higher in dikes close to Askja than farther away from it. Volcanic fissures and tectonic fractures are either oriented away from or concentric with the 3–4 identified calderas in Askja. The average azimuth of fissures and fractures in the area deviates significantly from the azimuth perpendicular to the direction of plate velocity. As this deviation decreases gradually northward, we suggest that the effect of the triple junction of the North American, Eurasian and the Hreppar microplate is a likely cause for this deviation. Shallow, tectonic earthquakes in the vicinity of Askja are often located in a relatively unfractured area between the fissure swarms of Askja and Kverkfjöll. These earthquakes are associated with strike-slip faulting according to fault plane solutions. We suggest that the latest magma intrusions into either the Askja or the Kverkfjöll fissure swarms rotated the maximum stress axis from being vertical to horizontal, causing the formation of strike-slip faults instead of the dilatational fractures related to the fissure swarms. The activity in different parts of the Askja fissure swarm is uneven in time and switches between subswarms, as shown by a fissure swarm that is exposed in an early Holocene lava NW of Herðubreið but disappears under a younger (3500–4500 BP) lava flow. We suggest that the location of inflation centres in Askja central volcano controls into which part of the Askja fissure swarm a dike propagates. The size and amount of fractures in the Kollóttadyngja lava shield decrease with increasing elevation. We suggest that this occurred as the depth to the propagating dike(s) was greater under central Kollóttadyngja than under its flanks, due to topography.  相似文献   
6.
Mount St. Helens has explosively erupted dacitic magma discontinuously over the last 40,000 years, and detailed stratigraphic data are available for the past 4,000 years. During this last time period the major-element composition of the dacites has ranged from mafic (62–64 wt% SiO2) to felsic (65–67 wt% SiO2), temperature has varied by about 150°C (770°–920°C), and crystallinity has ranged between 20% and 55%. Water content of these dacites has also fluctuated greatly. Although the source for the dacitic magmas is probably partial melting of lower crustal rocks, there is strong physical evidence, such as banded pumices, thermal heterogeneities in single pumices, phenocryst disequilibrium, contrasts between compositions of glass inclusions and host matrix glass, and amphibole reaction rims, that suggests that magma mixing has been prominent in the dacitic reservoir. Indeed, we suggest that the variations in major- and trace-element abundances in Mount St. Helens dacites indicate that magma mixing between felsic dacite and mafic magma has controlled the petrologic diversity of the dacitic magmas. Magma mixing has also controlled the composition of andesites erupted at Mount St. Helens, and thus it appears that the continuum of magmatic composition erupted at the volcano is controlled by mixing between felsic dacite, or possibly rhyodacite, and basalt. The flux of the felsic endmember to the reservior appears to have been relatively constant, whereas the flux of basalt may have increased in the past 4,000 years, as suggested by the apparently increased abundance of mafic dacite and andesite erupted in this period.  相似文献   
7.
Rhyolitic glass occurs as an interstitial phase in Tertiary basaltic dikes from northwestern Iceland forming up to 8% of the mode. Chlorophaeite occurs as globules within the glass as well as in interstitial vugs and vesicles. The existence and textural relations of these iron-rich globules in a silica-rich glass is suggestive of liquid immiscibility such as observed in synthetic systems. Trace element data on these naturally occurring phases is, however, inconsistent with experimentally determined partition coefficients for, for example, Ti, P, and Zr in immiscible liquids indicating that the chlorophaeite does not represent an immiscible phase and is more likely an alteration product. The similarity of the interstitial acid glasses to Iceland rhyolites is suggestive evidence of an origin for at least some Icelandic rhyolites by shallow-level fractional crystallization of basaltic magmas.  相似文献   
8.
The intensity of plinian eruptions   总被引:1,自引:2,他引:1  
Peak intensities (magma discharge rate) of 45 Pleistocene and Holocene plinian eruptions have been inferred from lithic dispersal patterns by using a theoretical model of pyroclast fallout from eruption columns. Values range over three orders of magnitude from 1.6 × 106 to 1.1 × 109 kg/s. Magnitudes (total erupted mass) also vary over about three orders of magnitude from 2.0 × 1011 to 6.8 × 1014 kg and include several large ignimbrite-forming events with associated caldera formation. Intensity is found to be positively correlated with the magnitude when total erupted mass (tephra fall, surges and pyroclastic flows) is considered. Initial plinian fall phases with intensities in excess of 2.0 × 108 kg/s typically herald the onset of major pyroclastic flow generation and subsequent caldera collapse. During eruptions of large magnitude, the transition to pyroclastic flows is likely to be the result of high intensity, whereas the generation of pyroclastic flows in small magnitude eruptions may occur more often by reduction of magmatic volatile content or some transient change in magma properties. The correlation between plinian fall intensity and total magnitude suggests that the rate of magma discharge is related to the size of the chamber being tapped. A simple model is presented to account for the variation in intensity by progressive enlargement of conduits and vents and excess pressure at the chamber roof caused by buoyant forces acting on the chamber as it resides in the crust. Both processes are fundamentally linked to the absolute size of the pre-eruption reservoir. The data suggest that sustained eruption column heights (i.e. magma discharge rates) are indicators of eventual eruption magnitude, and perhaps eruptive style, and thus are key parameters to monitor in order to assess the temporal evolution of plinian eruptions.  相似文献   
9.
10.
Ground-penetrating radar (GPR) is used to image and characterize fall and pyroclastic flow deposits from the 1815 eruption of Tambora volcano in Indonesia. Analysis of GPR common-mid-point (CMP) data indicate that the velocity of radar in the sub-surface is 0.1 m/ns, and this is used to establish a preliminary traveltime to-depth conversion for common-offset reflection profiles. Common-offset radar profiles were collected along the edge of an erosional gully that exposed approximately 1–2 m of volcanic stratigraphy. Additional trenching at select locations in the gully exposed the contact between the pre-1815 eruption surface and overlying pyroclastic deposit from the 1815 eruption. The deepest continuous, prominent reflection is shown to correspond to the interface between pre-eruption clay-rich soil and pyroclastics that reach a maximum thickness of 4 m along our profiles. This soil surface is distinctly terraced and is interpreted as the ground surface augmented for agriculture and buildings by people from the kingdom of Tambora. The correlation of volcanic stratigraphy and radar data at this location indicates that reflections are produced by the soil-pyroclastic deposit interface and the interface between pyroclastic flows (including pyroclastic surge) and the pumice-rich fall deposits. In the thickest deposits an additional reflection marks the interface between two pyroclastic flow units.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号