首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   1篇
地质学   3篇
自然地理   1篇
  2006年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有5条查询结果,搜索用时 109 毫秒
1
1.
The uppermost unit of the Cretan nappe system consists of ophiolites on the top, and an ophiolitic mélange at the base.Among the various constituents of the mélange, there are slices of low-P/high-T metamorphics. They form a variegated series consisting of tholeiitic ortho-amphibolites, para-amphibolites, andalusite and sillimanite-cordierite-garnet bearing mica schists, calcsilicate rocks, and marbles. The metamorphic sequence is locally intruded by early tectonic magmatites of gabbroic, dioritic and granitic composition. Critical mineral assemblages lead to a maximum temperature of about 700° C reached during metamorphism, at a total pressure of 4–5 kilobars. K — Ar dating on 6 hornblendes, 7 biotites and 1 muscovite yielded cooling ages of 75–66 m.y. and confirmed earlier results according to which the metamorphism and related magmatism took place in Late Cretaceous times.In order to evaluate the age relationships between the hightemperature metamorphics within the ophiolitic mélange and the ophiolites, hornblendes from ultramafic and mafic rocks of the ophiolite complex were dated by the K — Ar method. Hornblende from one schistose hornblendite forming a constituent of the ophiolites proper yielded 156 m.y. and thus provides a middle Jurassic minimum age for the formation of this piece of oceanic lithosphere. Four hornblendes of calc-alkaline gabbrodiorite dikes within the ophiolite complex gave distinctly lower K — Ar dates of about 140 m.y.. The dikes probably intruded after the detachment of the ophiolites in an island-arc or continental-margin environment.As a consequence, the high-temperature metamorphics and related intrusives in the ophiolitic mélange of Crete are genetically unrelated to the overlying ophiolites. The paleogeographic position of the crystalline terrane, slices of which are now incorporated into the ophiolitic mélange is still open to discussion.  相似文献   
2.
Polymetamorphic rocks of Sifnos (Greece) have been investigated by Rb-Sr, K-Ar, and fission track methods. Critical mineral assemblages from the northern and southernmost parts of Sifnos include jadeite+quartz+3T phengite, and omphacite+garnet +3T phengite, whereas the central part is characterized by the assemblage albite+chlorite+epidote+2M 1 phengite.K-Ar and Rb-Sr dates on phengites (predominantly 3T) of the best preserved high P/itTmetamorphic rocks from northern Sifnos gave concordant ages around 42 m.y., indicating a Late Lutetian age for the high P/T metamorphism. Phengites (2M 1+3T) of less preserved high P/T assemblages yielded K-Ar dates between 48 and 41 m.y. but generally lower Rb-Sr dates. The higher K-Ar dates are interpreted as being elevated by excess argon.K-Ar and Rb-Sr ages on 2M 1 phengites from central Sifnos vary between 24 and 21 m.y. These ages date a second, greenschist-facies metamorphism which overprinted the earlier high-pressure metamorphic rocks.  相似文献   
3.
4.
Reducing long-term remedial costs by transport modeling optimization   总被引:1,自引:0,他引:1  
The Department of Defense (DoD) Environmental Security Technology Certification Program and the Environmental Protection Agency sponsored a project to evaluate the benefits and utility of contaminant transport simulation-optimization algorithms against traditional (trial and error) modeling approaches. Three pump-and-treat facilities operated by the DoD were selected for inclusion in the project. Three optimization formulations were developed for each facility and solved independently by three modeling teams (two using simulation-optimization algorithms and one applying trial-and-error methods). The results clearly indicate that simulation-optimization methods are able to search a wider range of well locations and flow rates and identify better solutions than current trial-and-error approaches. The solutions found were 5% to 50% better than those obtained using trial-and-error (measured using optimal objective function values), with an average improvement of approximately 20%. This translated into potential savings ranging from 600,000 dollars to 10,000,000 dollars for the three sites. In nearly all cases, the cost savings easily outweighed the costs of the optimization. To reduce computational requirements, in some cases the simulation-optimization groups applied multiple mathematical algorithms, solved a series of modified subproblems, and/or fit "meta-models" such as neural networks or regression models to replace time-consuming simulation models in the optimization algorithm. The optimal solutions did not account for the uncertainties inherent in the modeling process. This project illustrates that transport simulation-optimization techniques are practical for real problems. However, applying the techniques in an efficient manner requires expertise and should involve iterative modification to the formulations based on interim results.  相似文献   
5.
The uppermost unit of the Cretan nappe system contains a variegated series of high-grade metamorphic rocks. In the Léndas area, amphibolites are present characterized by the assemblage
$$\text{brown}\;\text{hornblende}\;+\;\text{diopside}\;+\;\text{plagioclase}\;\text{(An 50)}$$
while associated metapelitic gneisses consist of
$$\text{garnet}\;+\;\text{cordierite}\;+\;\text{biotite}\;+\;\text{sillimanite (andalusite)}\;\pm\;\text{K-feldspar}\;+\;\text{plagioclase (An 40-50)}\;+\;\text{quartz}.$$
Judging from relevant experimental data for the gneiss assemblage including the Fe/Mg distribution on coexisting garnet and cordierite, the P-T conditions of metamorphism are estimated at about 700° C and 5 kb water vapour pressure.K/Ar determinations on hornblendes from three amphibolites yielded cooling ages of 71.3, 71.2, and 71.1 (±1.7) m.y. respectively; biotites from three paragneisses gave 70.2 ± 1.4, 69.7 ± 1.2, and 67.9 ± 1.4 m.y. respectively. Assuming a sealing temperature against argon diffusion of 300° C, for biotite, and 500° C, for hornblende, a cooling rate of 100–200° C/m.y. is calculated. Thus a late Cretaceous (eo-Alpine) metamorphic event is established in the post-Cretaceous nappes of Crete.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号