首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
地球物理   5篇
地质学   10篇
海洋学   1篇
自然地理   3篇
  2016年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1971年   1篇
  1939年   3篇
  1938年   1篇
  1929年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
—Tectonic studies of the great 1964 Alaska earthquake have underappreciated the nature of the subducted plate in influencing seismicity. We compare seismological observations in the Prince William and Kodiak areas that ruptured during this earthquake with the corresponding morphology and structure of the subducting plate. The upper plate geology (Prince William Terrane) and velocity structure are the same in both areas. In the Prince William area where the Yakutat Terrane subducted, the energy released and coupling were stronger than above the Kodiak subduction zone where thick trench sediment subducts. The conjecture that lower plate character or the amount of subducted sediment affects coupling helps explain variability in seismology, geodetic inversions and the horizontal velocity of GPS stations.  相似文献   
6.
7.
8.
In 1984–1985, the Kaiko consortium collected Seabeam, single-channel seismic and submersible sampling data in the vicinity of the Daiichi-Kashima seamount and the southern Japan trench. We performed a prestack migration of a Shell multichannel seismic profile, that crosses this area, and examined it in the light of this unusually diverse Kaiko dataset. Unlike the frontal structure of the northern Japan trench, where mass-wasting appears to be the dominant tectonic process, the margin in front of the Daiichi-Kashima shows indentation, imbrication, uplift and erosion. Emplacement of the front one-third of the seamount beneath the margin front occurs without accretion. We conclude that the Daiichi-Kashima seamount exemplifies an intermediate stage between the initial collision and subduction of a seamount at a continental margin.  相似文献   
9.
Reflection seismic data from the Peruvian continental margin at 12° S clearly reveal an accretionary wedge and buttress. Sandbox experiments applying the physical concept of the Coulomb theory allow the systematic investigation of the growth and deformation of such an accretionary structure. The style of deformation of the buttress and the internal structure of the wedge is observed in the sandbox models. The possibility of underplating material beneath the buttress and the amount of tectonic erosion depend on the physical properties of the materials, mainly internal friction, cohesion and basal friction. Boundary conditions such as the height of the subduction gate and the thickness of incoming sand also constrain the style of growth of the model accretionary structure.The configurations of two experiments were closely scaled to reflection seismic depth sections across the Peruvian margin. A deformable buttress constructed of compacted rock powder is introduced to replicate the basement rock which allows deformation similar to that in the seismic data. With the sandbox models it is possible to verify a proposed accretionary history derived from seismic and borehole data. The models also help in understanding the mechanisms which control the amount of accretion, subduction and underplating as a function of physical properties, boundary conditions and the duration of convergence.  相似文献   
10.
This paper presents the results of a detailed survey combining Seabeam mapping, gravity and geomagnetic measurements as well as single-channel seismic reflection observations in the Japan Trench and the juncture with the Kuril Trench during the French-Japanese Kaiko project (northern sector of the Leg 3) on the R/V “Jean Charcot”. The main data acquired during the cruise, such as the Seabeam maps, magnetic anomalies pattern, and preliminary interpretations are discussed. These new data cover an area of 18,000 km2 and provide for the first time a detailed three-dimensional image of the Japan Trench. Combined with the previous results, the data indicate new structural interpretations. A comparative study of Seabeam morphology, single-channel and reprocessed multichannel records lead to the conclusion that along the northern Japan Trench there is little evidence of accretion but, instead, a tectonic erosion of the overriding plate. The tectonic pattern on the oceanic side of the trench is controlled by the creation of new normal faults parallel to the Japan Trench axis, which is a direct consequence of the downward flexure of the Pacific plate. In addition to these new faults, ancient normal faults trending parallel to the N65° oceanic magnetic anomalies and oblique to the Japan trench axis are reactivated, so that two directions of normal faulting are observed seaward of the Japan Trench. Only one direction of faulting is observed seaward of the Kuril Trench because of the parallelism between the trench axis and the magnetic anomalies. The convergent front of the Kuril Trench is offset left-laterally by 20 km relative to those of the Japan Trench. This transform fault and the lower slope of the southernmost Kuril Trench are represented by very steep scarps more than 2 km high. Slightly south of the juncture, the Erimo Seamount riding on the Pacific plate, is now entering the subduction zone. It has been preceded by at least another seamount as revealed by magnetic anomalies across the landward slope of the trench. Deeper future studies will be necessary to discriminate between the two following hypothesis about the origin of the curvature between both trenches: Is it due to the collision of an already subducted chain of seamounts? or does it correspond to one of the failure lines of the America/Eurasia plate boundary?  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号