首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   4篇
大气科学   3篇
地球物理   2篇
地质学   23篇
海洋学   1篇
自然地理   9篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2002年   3篇
  2000年   1篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1977年   1篇
  1967年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
Mafic to intermediate enclaves are evenly distributed throughoutthe dacitic 1991–1995 lava sequence of Unzen volcano,Japan, representing hundreds of mafic recharge events over thelife of the volcano. This study documents the morphological,textural, chemical, and petrological characteristics of theenclaves and coexisting silicic host lavas. The eruptive productsdescribed in this study appear to be general products of magmamingling, as the same textural types are seen at many othervolcanoes. Two types of magmatic enclaves, referred to as Porphyriticand Equigranular, are easily distinguished texturally. Porphyriticenclaves display a wide range in composition from basalt toandesite, are glass-rich, spherical and porphyritic, and containlarge, resorbed, plagioclase phenocrysts in a matrix of acicularcrystals and glass. Equigranular enclaves are andesitic, non-porphyritic,and consist of tabular, medium-grained microphenocrysts in amatrix glass that is in equilibrium with the host dacite magma.Porphyritic enclaves are produced when intruding basaltic magmaengulfs melt and phenocrysts of resident silicic magma at theirmutual interface. Equigranular enclaves are a product of a moreprolonged mixing and gradual crystallization at a slower coolingrate within the interior of the mafic intrusion. KEY WORDS: mafic enclaves; quenched mafic inclusions; magma mingling; Unzen volcano; Unzen Scientific Drilling Project; resorbed plagioclase  相似文献   
2.
REPLY     
  相似文献   
3.
ABSTRACT Chert folds and 'dyke'-like boudinage in the Senonian Mishash Formation of Israel have orientations consistent with contemporaneous tectonic patterns whereas their amplitudes are anomalously high relative to strains calculated for adjacent layers. We suggest several means by which density inversions associated with chert diagenesis might amplify gentle structures whose wavelengths and orientations were determined by regional stresses.  相似文献   
4.
The type Lindsey Bridge Member of the Moorefield Formation of northeastern Oklahoma consists of 24 ft. of massively cross-bedded limestone. Cross-bed shape, lithologic variation, grain size and sorting, distribution of insolubles, and distribution of fossils and fossil burrows can be explained with reference to a hydrodynamic model developed in recent flume studies. Three facies can be distinguished in this unit: (1 Thei) foresets, thick-bedded, well-sorted, fine to medium crinoidal grainstones, dipping at angles up to 1° (2) toesets, which are thin-bedded, poorly sorted, skeletal packstones notably more fossiliferous than the foresets, with which they are laterally gradational; toesets dip at approximately 5°-8° (3) bottomsets, composed of argillaceous, fine-grained (mainly silt-size), skeletal limestones. Foresets overlie previously deposited bottomsets; this geometry is typical of regressive sedimentation. The exposure is adjacent to a pre-Moorefield topographic high. As currents crossing this high entered a basin on the downcurrent side, flow separation occurred. Bed material load was deposited mainly on the foreset slope, suspension material mainly in toeset and bottomset areas. The poor sorting of the toesets is in part due to reverse circulation, formed by the flow separation, which transported bottomset sediment back toward the foreset. Jopling (1965b) has shown that this depositional geometry produces tangential cross-beds similar to those seen in this outcrop. Differential settling velocity, substrate stability, and abundance of organic detritus influenced other sedimentologic properties of the deposit.  相似文献   
5.
Ayers Rock     
For years the world's most famous inselberg was plagued by the deleterious effects of human activity. Now a massive investment, stimulated by the international tourist industry, has ensured preservation of the rock's unique geomorphological features and its fragile ecology.  相似文献   
6.
Zircons from the Devils Kitchen rhyolite in the PleistoceneCoso Volcanic field, California have been analyzed by in situPb/U ion microprobe (SHRIMP-RG) and by detailed cathodoluminescenceimaging. The zircons yield common-Pb-corrected and disequilibrium-corrected206Pb/238U ages that predate a previously reported K–Arsanidine age by up to 200 kyr, and the range of ages exhibitedby the zircons is also approximately 200 kyr. Cathodoluminescenceimaging indicates that zircons formed in contrasting environments.Most zircons are euhedral, and a majority of the zircons areweakly zoned, but many also have anhedral, embayed cores, witheuhedral overgrowths and multiple internal surfaces that aretruncated by later crystal zones. Concentrations of U and Thvary by two orders of magnitude within the zircon population,and by 10–20 times between zones within some zircon crystals,indicating that zircons were transferred between contrastingchemical environments. A zircon saturation temperature of 750°Coverlaps within error a previously reported phenocryst equilibrationtemperature of 740 ± 25°C. Textures in zircons indicativeof repeated dissolution and subsequent regrowth are probablycaused by punctuated heating by mafic magma input into rhyolite.The overall span of ages and large variation in U and Th concentrations,combined with calculated zircon saturation temperatures andresorption times, are most compatible with crystallization inmagma bodies that were emplaced piecemeal in the crust at Cosoover 200 kyr prior to eruption, and that were periodically rejuvenatedor melted by subsequent basaltic injections. KEY WORDS: zircon geochronology; residence time; rhyolite; ion microprobe; California  相似文献   
7.
8.
Detailed examination of inter- and supratidal delta and floodplain sediments exposed in eroding bank sections at 52 locations along the Squamish River estuary provides the basis for recognizing seven distinct facies within the 5500 m-long estuary. Estuary sedimentation is initially driven by the development of sand bar complexes along the seaward edge of the intertidal delta. Sedimentation continues within interdistributary bay environments as intertidal sandflats and then tidal marshes develop, Aggradation of the delta within interdistributary bay environments results in a gradual transition from delta to alluvial plain. Of the seven facies identified, only the intertidal sands and tidal marsh deposits provide evidence of their tidal origin. Examination of deposits throughout the riverine estuary reveals a number of gradual yet distinct changes of sediment size, structure, and sequence architecture. These trends record the changing nature of tidal and riverine control on sedimentation along the tidal gradient. Generally, with increasing distance up-estuary, sediment grain-size increases, the thickness of fine-grained overbank deposits decreases, and bedding changes from fine parallel bedding to higher energy bedforms. In addition, fining-upward successions become capped by coarser sands, facies contacts change from gradational to abrupt and occasionally erosional, and facies successions become increasingly complex and less predictable. Squamish River estuary has been divided into four zones based on sedimentological and stratigraphical evidence, each zone reflecting changes in the relative influence of tidal and riverine control on sedimentation. Each zone contains distinctly different facies sequences, although zone boundaries generally are gradational.  相似文献   
9.
The Swan Hills Formation (Middle-Upper Devonian) of the Western Canada Basin is host to several NW-SE-trending gas fields developed in massive replacement dolostone. One of these, the Rosevear Field, contains two major dolostone trends along opposing margins of a marine channel that penetrates into a platform-reef complex. Dolostones consist predominantly of branching and bulbous strdmatoporoid floatstones and rudstones with well-developed moldic and vuggy porosity. Replacement dolomite is coarsely crystalline (100-600 μm), inclusion-rich, composed of euhedral through anhedral crystals and has a blotchy to homogeneous red cathodoluminescence. Geochemically, replacement dolomite is characterized by (i) nearly stoichiometric composition (50.1-51.1 mol% CaCO3), (ii) negative δ18O values (mean=-7.5‰, PDB) and (iii) variable 87Sr/86Sr ratios ranging from values similar to Late Devonian-Early Mississippian seawater (~0.7082) to radiogenic compositions comparable to saddle dolomite cements (>0.7100). Dolomitization began after widespread precipitation of early, equant calcite spar and after the onset of pressure solution, implying that replacement dolomite formed in a burial environment. Oxygen isotope data suggest that dolomite formed at 35-75°C, temperatures reached during burial in Late Devonian through Jurassic time, at minimum depths of 450 m. The linear NW-SE orientation of most dolomite fields in the Swan Hills Formation is suggestive of fault control on fluid circulation. Two models are proposed for fault-controlled circulation of dolomitizing fluids at the Rosevear Field. In the first, compaction-driven, updip fluid migration occurred in response to basin tilting commencing in the Late Palaeozoic. Deep basinal fluids migrating updip were focused into channel-margin sediments along fault conduits. The second model calls upon fault-controlled convective circulation of (i) warm Devonian-Mississippian seawater or (ii) Middle Devonian residual evaporitic brines. The overlap in 87Sr/86Sr and δ18O compositions, and similar cathodoluminescence properties between replacement and saddle dolomites provide evidence for neomorphism of some replacement dolomite. Quantitative modelling of Sr and O isotopes and Sr abundances suggests partial equilibration of some replacement dolomite with hot radiogenic brines derived during deep burial of the Swan Hills Formation in the Late Cretaceous-Palaeocene. Interaction of replacement dolomite with deep brines led to enrichment in 87Sr while leaving δ18O similar to pre-neomorphism values.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号