首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
  国内免费   2篇
地质学   2篇
自然地理   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
排序方式: 共有3条查询结果,搜索用时 609 毫秒
1
1.
We present the whole rock and the mineral chemical data for upper mantle peridotites from the San-Jiang region in Yunnan, SW China. These peridotites are a part of a Paleo-Tethyan ophiolite belt occurring along the Jinshajiang and Lancangjiang suture zones. All samples of the Jinshajiang and Lancangjiang ultramafic rocks are completely serpentinized. The Jinshajiang serpentinites are characterized by no relict of olivine and pyroxene, and the Cr# content of spinels is 0.32–0.49. The Lancangjiang serpentinites were collected from two different locations; the northern location which has some relict of Opx(Al2O3 is 0.13–2.2 wt%, TiO 2 is 0.004–0.057 wt% and Mg# content is 0.895–0.933) and the Cr# content of spinel is 0.26-0.55; the southern location, which has some relict of Olivine(Fo = 90–92.5 and NiO = 0.12–0.26 wt%), and spinel Cr# ranging from 0.41 to 0.57. The whole rock geochemical and the mineral chemistry data imply that the Jinshajiang and Lancangjiang serpentinites represent abyssal peridotites residues after ~15–20% partial melting for the Jinshajiang and Lancangjiang serpentinites(south location), and ~11–19% partial melting for the Lancangjiang serpentinites(north location). In addition, the compositional trends of the spinel analyses of the Lancangjiang serpentinites imply that the MORB melt-peridotite interaction process played a significant role during their evolution. These processes are evidenced by an increase in Cr# with an increase in TiO 2, whereas the spinel analyses of the Jinshajiang serpentinites display an increase in Cr# with a decrease in Ti O2, indicating that the Jinshajiang serpentinites were subjected to a simple partial melting process.  相似文献   
2.
<正>We present the whole-rock and the mineral chemical data for upper mantle peridotites from the San-Jiang region in Yunnan Province,SW China.These peridotites are part of a Paleo-Tethyan ophiolite belt occurring along the Jinshajiang and Lancangjiang suture zones.All samples of Jinshajiang and Lancangjiang ultramafic rocks are  相似文献   
3.
This study evaluates interannual variations and trends in growing season daily temperature sum and daily precipitation sum in Finland during 1961–2011, and their connections to well known atmospheric circulation patterns. Changes in summer (June–August) climate partially explain changes in growing season daily temperature sum and daily precipitation sum over Finland, which naturally decreased from south to north. On a national scale, growing season warmed and became wetter during 1961–2011, as growing season daily temperature sum and daily precipitation sum significantly (p < 0.05) increased by 5.01 ± 3.17°C year–1 and 1.39 ± 0.91 mm year–1, respectively. The East Atlantic pattern was the most influential atmospheric circulation pattern for variations in growing season daily temperature sum (rho = 0.40) across Finland and the East Atlantic/West Russia pattern was most influential for growing season daily precipitation sum variability (rho = –0.54). There were significant (p < 0.05) increasing trends in growing season daily temperature sum and daily precipitation sum throughout Finland during 1961–2011. Increased growing season daily temperature sum was mainly observed in northern, central, western, eastern and coastal areas of south‐western Finland. This warming was positively associated with the East Atlantic pattern in the north, centre and south, but negatively associated with the East Atlantic/West Russia pattern in eastern Finland. Increased GSP mostly occurred in southern, eastern, western, central, northern and north‐western Finland. These wetting trends were positively correlated with the East Atlantic pattern in the north and negatively correlated with the Polar pattern in the south and the East Atlantic/West Russia pattern in the east, west, centre and north‐east of Finland. The overall agroclimatic year‐to‐year variability in Finland between 1961 and 2011 was mostly linked to variations in the East Atlantic and East Atlantic/West Russia patterns.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号