首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   21篇
  国内免费   4篇
测绘学   5篇
大气科学   48篇
地球物理   69篇
地质学   104篇
海洋学   25篇
天文学   44篇
自然地理   36篇
  2022年   3篇
  2021年   9篇
  2020年   10篇
  2019年   8篇
  2018年   14篇
  2017年   12篇
  2016年   18篇
  2015年   11篇
  2014年   18篇
  2013年   27篇
  2012年   22篇
  2011年   18篇
  2010年   14篇
  2009年   17篇
  2008年   14篇
  2007年   18篇
  2006年   14篇
  2005年   11篇
  2004年   10篇
  2003年   5篇
  2002年   8篇
  2001年   5篇
  2000年   10篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1988年   1篇
  1984年   1篇
  1983年   2篇
  1982年   4篇
  1972年   1篇
排序方式: 共有331条查询结果,搜索用时 15 毫秒
1.
Results of several fits of the lunar theory ELP 2000-82B and of Moons' theory of libration are presented. The theories are fitted both to JPL numerical integrations and to LLR observations  相似文献   
2.
Early (>3 Gy) wetter climate conditions on Mars have been proposed, and it is thus likely that pedogenic processes have occurred there at some point in the past. Soil and rock chemistry of the Martian landing sites were evaluated to test the hypothesis that in situ aqueous alteration and downward movement of solutes have been among the processes that have transformed these portions of the Mars regolith. A geochemical mass balance shows that Martian soils at three landing sites have lost significant quantities of major rock-forming elements and have gained elements that are likely present as soluble ions. The loss of elements is interpreted to have occurred during an earlier stage(s) of weathering that may have been accompanied by the downward transport of weathering products, and the salts are interpreted to be emplaced later in a drier Mars history. Chemical differences exist among the sites, indicating regional differences in soil composition. Shallow soil profile excavations at Gusev crater are consistent with late stage downward migration of salts, implying the presence of small amounts of liquid water even in relatively recent Martian history. While the mechanisms for chemical weathering and salt additions on Mars remain unclear, the soil chemistry appears to record a decline in leaching efficiency. A deep sedimentary exposure at Endurance crater contains complex depth profiles of SO4, Cl, and Br, trends generally consistent with downward aqueous transport accompanied by drying. While no model for the origin of Martian soils can be fully constrained with the currently available data, a pedogenic origin is consistent with observed Martian geology and geochemistry, and provides a testable hypothesis that can be evaluated with present and future data from the Mars surface.  相似文献   
3.
Coastal habitat use and residency of a coastal bay by juvenile Atlantic sharpnose sharks, Rhizoprionodon terraenovae, were examined by acoustic monitoring, gillnet sampling, and conventional tag–recapture. Acoustic monitoring data were used to define the residency and movement patterns of sharks within Crooked Island Sound, Florida. Over 3 years, sharks were monitored for periods of 1–37 days, with individuals regularly moving in and out of the study site. Individual sharks were continuously present within the study site for periods of 1–35 days. Patterns of movement could not be correlated with time of day. Home range sizes were typically small (average?=?1.29 km2) and did not vary on a yearly basis. Gillnet sampling revealed that juvenile Atlantic sharpnose sharks were present in all habitat types found within Crooked Island Sound, and peaks in abundance varied depending on month within a year. Although telemetry data showed that most individuals remained within the study site for short periods of time before emigrating, conventional tag–recapture data indicates some individuals return to Crooked Island Sound after extended absences (maximum length?=?1,352 days). Although conventional shark nursery theory suggests small sharks remain in shallow coastal waters to avoid predation, juvenile Atlantic sharpnose sharks frequently exited from protected areas and appear to move through deeper waters to adjacent coastal bays and estuaries. Given the high productivity exhibited by this species, the benefit gained through a nursery that reduces predation may be limited for this species.  相似文献   
4.
The equation of state of MgGeO3 perovskite was determined between 25 and 66 GPa using synchrotron X-ray diffraction with the laser-heated diamond anvil cell. The data were fit to a third-order Birch–Murnaghan equation of state and yielded a zero-pressure volume (V 0) of 182.2 ± 0.3 Å3 and bulk modulus (K 0) of 229 ± 3 GPa, with the pressure derivative (K= (?K 0/?P) T ) fixed at 3.7. Differential stresses were evaluated using lattice strain theory and found to be typically less than about 1.5 GPa. Theoretical calculations were also carried out using density functional theory from 0 to 205 GPa. The equation of state parameters from theory (V 0 = 180.2 Å3, K 0 = 221.3 GPa, and K0 = 3.90) are in agreement with experiment, although theoretically calculated volumes are systematically lower than experiment. The properties of the perovskite phase were compared to MgGeO3 post-perovskite phase near the observed phase transition pressure (~65 GPa). Across the transition, the density increased by 2.0(0.7)%. This is in excellent agreement with the theoretically determined density change of 1.9%; however both values are larger than those for the (Mg,Fe)SiO3 phase transition. The bulk sound velocity change across the transition is small and is likely to be negative [?0.5(1.6)% from experiment and ?1.2% from theory]. These results are similar to previous findings for the (Mg,Fe)SiO3 system. A linearized Birch–Murnaghan equation of state fit to each axis yielded zero-pressure compressibilities of 0.0022, 0.0009, and 0.0016 GPa?1 for the a, b, and c axis, respectively. Magnesium germanate appears to be a good analog system for studying the properties of the perovskite and post-perovskite phases in silicates.  相似文献   
5.
We report results from the highest-resolution simulations of global warming yet performed with an atmospheric general circulation model. We compare the climatic response to increased greenhouse gases of the National Center for Atmospheric Research (NCAR) climate model, CCM3, at T42 and T170 resolutions (horizontal grid spacing of 300 and 75 km respectively). All simulations use prescribed sea surface temperatures (SST). Simulations of the climate of 2100 ad use SSTs based on those from NCAR coupled model, Climate System Model (CSM). We find that the global climate sensitivity and large-scale patterns of climate change are similar at T42 and T170. However, there are important regional scale differences that arise due to better representation of topography and other factors at high resolution. Caution should be exercised in interpreting specific features in our results both because we have performed climate simulations using a single atmospheric general circulation model and because we used with prescribed sea surface temperatures rather than interactive ocean and sea-ice models.  相似文献   
6.
7.
Impact crater saturation equilibrium is a state where a surface is so densely cratered that a new crater cannot form without removing older craters and the observed crater density is in (quasi-)equilibrium. Whether densely cratered surfaces throughout the solar system are saturated for large, kilometer-sized craters has been debated for decades. This work explores if spatial statistics can provide insight if these crater distributions are in saturation equilibrium. The supposition is that crater distributions become more spatially uniform (more evenly spaced) as they reach saturation (Squyres et al. 1997 ). A numerical simulation of crater saturation is combined with observations of cratered terrains throughout the solar system to assess the utility of using spatial statistics. The numerical simulations examine spatial statistics and saturation equilibrium for crater distributions for various input population size-frequency distribution (SFD) slopes, along with a range in the effective crater erasure size, effectiveness of smaller craters erasing the rims of larger craters, and the amount of rim needed to recognize a crater. Simulations show that saturated terrains do become more spatially uniform, and that the degree of uniformity appears to be most dependent on the input SFD slope. When simulation results are compared to observed crater distributions, I find that large, kilometer-sized craters on densely cratered terrains throughout the solar system are likely in saturation equilibrium.  相似文献   
8.
The initiation and growth of boreal peatlands developed on well‐drained, sandy landforms are closely associated with podzolic soil paludification processes. The origin of Sphagnum bogs extending on large deltaic plains was examined to test the hypothesis of the dual impact of indurated (ortstein) podzols and fire on forest soil paludification and concurrent peatland initiation and expansion. Mineral soil, basal organic matter and peat monoliths were sampled for soil and macrofossil analyses along an 800‐m toposequence starting from a mixed‐wood boreal forest to a Sphagnum bog (Lebel bog, eastern Quebec, Canada), and ending at a peat dome in the thickest section of the peatland. Mineral soils along the toposequence are ortstein humo‐ferric podzols distributed in the forest environment and beneath Sphagnum peat in the bog, except at the peat dome. Initial peatland growth occurred c. 6000 cal. a BP. Soil paludification coincided with the cessation of fire occurrence as recorded in the organic and mineral layers preceding Sphagnum expansion. Unlike most temperate and boreal raised bogs, the Sphagnum bog developed directly from a forest environment without passing through a transitional fen stage. Conifer forests regenerated successively after several fires between 4200 and 1600 cal. a BP before bog expansion. Pre‐bog forests were composed of fire‐prone black spruce (Picea mariana) and jack pine (Pinus banksiana) trees, and ericaceous species. Given the distribution and thickness of ortstein horizons progressively decreasing and disappearing towards the peatland dome, growth and expansion of the Sphagnum bog was not caused by soil induration processes, which could have potentially impeded vertical and horizontal drainage. The development of indurated podzols outside and several hundred metres inside the peatland preceded the initiation and expansion of the Sphagnum bog. Cessation of fire activity appears to be a key factor facilitating the lateral expansion of the Sphagnum bog under wet soil conditions.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号