首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
地球物理   5篇
地质学   7篇
海洋学   2篇
天文学   1篇
自然地理   3篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  1996年   1篇
  1995年   1篇
  1986年   1篇
  1985年   1篇
  1979年   2篇
  1978年   2篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Sediment trap experiments were carried out 39 times during the years from 1977 to 1981 in Funka Bay, Hokkaido, Japan. The observed total particulate flux varies seasonally, that is, the particulate fluxes in winter and spring are larger than those in summer. The fluxes in all seasons increased with depth. Major components of settling particles are aluminosilicate in winter, biogenic silicate in spring and organic matter and terrestrial material in summer, respectively. The fluxes of each chemical component observed with sediment traps are normalized to that of Al by assuming that the actual flux of Al is equal to the accumulation rate onto the sediment surface. Vertical changes of the normalized flux of each chemical component indicate the following: Fe was not regenerated from the settling particles in the water column. Mn was regenerated from the settling particles in the lower layer exclusively between 80 m depth and the sediment surface. Cd was actively regenerated in the upper layer above 80 m depth. Phosphate was regenerated in the upper layer, while biogenic silicate was in the lower layer. The silicate regeneration, therefore, occurs after phosphate regeneration. The material decomposing in the water column below 40 m has an atomic ratio of P ∶ Si ∶ C = 1 ∶ 52 ∶ 128.  相似文献   
2.
We have reinvestigated the mid-Cretaceous plume pulse in relation to paleo-oceanic plateaus from accretionary prisms in the circum-Pacific region, and we have correlated the Pacific superplume activity with catastrophic environmental changes since the Neoproterozoic. The Paleo-oceanic plateaus are dated at 75–150 Ma; they were generated in the Pacific superplume region and are preserved in accretionary prisms. The volcanic edifice composed of both modern and paleo-oceanic plateaus is up to 10.7 × 106 km2 in area and 19.1 × 107 km3 in volume. The degassing rate of CO2 (0.82 − 1.1 × 1018 mol/m.y.) suggests a significant impact on Cretaceous global warming. The synchronous occurrence of paleo-oceanic plateaus in accretionary complexes indicates that Pacific superplume pulse activities roughly coincided at the Permo-Triassic boundary and the Vendian–Cambrian boundary interval. The CO2 expelled by the Pacific superplume probably contributed to environmental catastrophes. The initiation of the Pacific superplume contributed to the snowball Earth event near the Vendian–Cambrian boundary; this was one of the most dramatic events in Earth's history. The scale of the Pacific superplume activity roughly corresponds to the scale of drastic environmental change.  相似文献   
3.
Seismic tomography studies in the northeastern Japan arc have revealed the existence of an inclined sheet-like seismic low-velocity and high-attenuation zone in the mantle wedge at depths shallower than about 150 km. This sheet-like low-velocity, high-attenuation zone is oriented sub-parallel to the subducted slab, and is considered to correspond to the upwelling flow portion of the subduction-induced convection. The low-velocity, high-attenuation zone reaches the Moho immediately beneath the volcanic front (or the Ou Backbone Range) running through the middle of the arc nearly parallel to the trench axis, which suggests that the volcanic front is formed by this hot upwelling flow. Aqueous fluids supplied by the subducted slab are probably transported upward through this upwelling flow to reach shallow levels beneath the Backbone Range where they are expelled from solidified magma and migrate further upward. The existence of aqueous fluids may weaken the surrounding crustal rocks, resulting in local contractive deformation and uplift along the Backbone Range under the compressional stress field of the volcanic arc. A strain-rate distribution map generated from GPS data reveals a notable concentration of east–west contraction along the Backbone Range, consistent with this interpretation. Shallow inland earthquakes are also concentrated in the upper crust of this locally large contraction deformation zone. Based on these observations, a simple model is proposed to explain the deformation pattern of the crust and the characteristic shallow seismic activity beneath the northeastern Japan arc.  相似文献   
4.
Seismicity located by using the most recent data obtained from the high-gain seismograph network of Tohoku University shows that the deep seismic zone beneath northeastern Honshu, Japan, is composed of two thin planes which are parallel to each other and are 30–40 km apart. Focal mechanisms derived from the earthquakes in the upper plane are reverse-faulting, or, some of them, down-dip compression. As a contrast, those in the lower plane are down-dip extension. The location of the upper boundary of the descending lithospheric slab, inferred from the arrival-time difference between ScS and ScSp waves and from the travel-time anomaly of intermediate-depth earthquakes observed at the small-scale seismic array, coincides exactly with the upper plane of the double-planed deep seismic zone. Anelasticity (1/Q) structure of the upper mantle consists of three distinct zones: a high-Q (Qs− 1500) inclined lithospheric slab, an intennediate-Q (Qs−350) land-side mantle between the Pacific coast and the volcanic front, and a low-Q (Qs − 100) land-side mantle between the volcanic front and the coast of the Japan Sea.The evidence obtained here provides valuable information as to the definition of the type of mechanism producing the plate motion beneath island arcs.  相似文献   
5.
Ocean Science Journal - We evaluated the influence of areas with dissimilar upwelling intensity along the Humboldt Current System on the morphological variation of the economically important sea...  相似文献   
6.
Summary. The upper boundary of the descending oceanic plate is located by using PS -waves (converted from P to S at the boundary) in the Tohoku District, the north-eastern part of Honshu, Japan. the observed PS-P time data are well explained by a two-layered oceanic plate model composed of a thin low-velocity upper layer whose thickness is less than 10 km and a thick high-velocity lower layer; the upper and lower layers respectively have 6 per cent lower and 6 per cent higher velocity than the overriding mantle. the estimated location of the upper boundary is just above the upper seismic plane of the double-planed deep seismic zone. This result indicates that events in the upper seismic plane, at least in the depth range from 60 to 150 km, occur within the thin low-velocity layer on the surface of the oceanic plate.  相似文献   
7.
Episode 48 of the ongoing eruption of Kilauea, Hawai`i, began in July 1986 and continuously extruded lava for the next 5.5 years from a low shield, Kūpaianaha. The flows in March 1990 headed for Kalapana and inundated the entire town under 15–25 m of lava by the end of August. As the flows advanced eastward, they entered into Kaimū Bay, replacing it with a plain of lava that extends 300 m beyond the original shoreline. The focus of our study is the period from August 1 to October 31, 1990, when the lava buried almost 406,820 m2 of the 5-m deep bay. When lava encountered the sea, it flowed along the shoreline as a narrow primary lobe up to 400 m long and 100 m wide, which in turn inflated to a thickness of 5–6 m. The flow direction of the primary lobes was controlled by the submerged delta below the lavas and by damming up lavas fed at low extrusion rates. Breakout flows through circumferential and axial inflation cracks on the inflating primary lobes formed smaller secondary lobes, burying the lows between the primary lobes and hiding their original outlines. Inflated flow lobes eventually ruptured at proximal and/or distal ends as well as mid-points between the two ends, feeding new primary lobes which were emplaced along and on the shore side of the previously inflated lobes. The flow lobes mapped with the aid of aerial photographs were correlated with daily observations of the growing flow field, and 30 primary flow lobes were dated. Excluding the two repose periods that intervened while the bay was filled, enlargement of the flow field took place at a rate of 2,440–22,640 square meters per day in the bay. Lobe thickness was estimated to be up to 11 m on the basis of cross sections of selected lobes measured using optical measurement tools, measuring tape and hand level. The total flow-lobe volume added in the bay during August 1–October 31 was approximately 3.95 million m3, giving an average supply rate of 0.86 m3/s.  相似文献   
8.
The Ogasawara Islands mainly comprise Eocene volcanic strata formed when the Izu–Ogasawara–Mariana Arc began. We present the first detailed volcanic geology, petrography and geochemistry of the Mukojima Island Group, northernmost of the Ogasawara Islands, and show that the volcanic stratigraphy consists of arc tholeiitic rocks, ultra‐depleted boninite‐series rocks, and less‐depleted boninitic andesites, which are correlatable to the Maruberiwan, Asahiyama and Mikazukiyama Formations on the Chichijima Island Group to the south. On Chichijima, a short hiatus is identified between the Maruberiwan (boninite, bronzite andesite, and dacite) and Asahiyama Formation (quartz dacite and rhyolite). In contrast, these lithologies are interbedded on Nakodojima of the Mukojima Island Group. The stratigraphically lower portion of Mukojima is mainly composed of pillow lava, which is overlain by reworked volcaniclastic rocks in the middle, whereas the upper portion is dominated by pyroclastic rocks. This suggests that volcanic activity now preserved in the Mukojima Island Group records growth of one or more volcanoes, beginning with quiet extrusion of lava under relatively deep water followed by volcaniclastic deposition. These then changed into moderately explosive eruptions that took place in shallow water or above sea level. This is consistent with the uplift of the entire Ogasawara Ridge during the Eocene. Boninites from the Mukojima Island Group are divided into three types on the basis of geochemistry. Type 1 boninites have high SiO2 (>57.0 wt.%) and Zr/Ti (>0.022) and are the most abundant type in both Mukojima and Chichijima Island Groups. Type 2 boninites have low SiO2 (<57.1 wt.%) and Zr/Ti (<0.014). Type 3 boninites have 57.6–60.7 wt.% SiO2 and are characterized by high CaO/Al2O3 (0.9–1.1). Both type 2 and 3 boninites are common on Mukojima but are rare in the Chichijima Island Group.  相似文献   
9.
10.
 Ultramafic xenoliths are found in Kishyuku Lava, Fukue-jima, Southwest Japan. These include spinel lherzolite, harzburgite and dunite, as well as pyroxenite. The compositions of the constituent minerals of the peridotite xenoliths are in the range of upper mantle peridotites. Variable Cr/(Cr+Al) ratios (0.1–0.5) of spinel, together with a limited range in olivine composition (Fo90–Fo92), indicate that the xenoliths are derived from slightly to highly depleted residual mantle. The combination of previously published clinopyroxene-olivine geothermobarometry and clinopyroxene-orthopyroxene geothermometry applied to the xenoliths yields a high geotherm of 1070° C at 1.0 GPa up to 1200° C at 2.2 GPa. Existence of such depleted upper mantle is compatible with the existing model of asthenospheric injection during the rifting of the Northeast China and the Japan Sea. The high geotherm is caused by thermal perturbation due to the injection of the hot asthenosphere and/or post-rifting uprise of mantle diapirs since 11 Ma. Received: 15 May 1995 / Accepted: 3 January 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号