首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
测绘学   1篇
地质学   3篇
自然地理   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
Evaluation of recharge and groundwater dynamics of an aquifer is an important step for finding a proper groundwater management scenario. This has been performed on the basis of statistical Kendall Tau test to find a relationship between groundwater levels and hydro-meteorological parameters (e.g., precipitation, temperature, evaporation). Recharge to the aquifer was estimated for identification of critical areas/locations based on the analytical Soil and Water Assessment Tool. Moreover, spatiotemporal variability of groundwater levels has been quantified using space–time variogram. The overall characterization method has been applied to the shallow alluvial aquifer of Kanpur city in India. The analysis was performed using groundwater level data from 56 monitoring piezometer locations in Kanpur from March 2006 to June 2011. Groundwater level shows relatively higher correlation with temperature. Performance of the geostatistical model was evaluated by comparing with the observed values of groundwater level from January 2011 to June 2011 for two scenarios: “with limited spatiotemporal data” and “without spatiotemporal data.” It is evident that spatiotemporal prediction of groundwater level can be performed even for the unmonitored/missing data. This analysis demonstrates the potential applicability of the method for a general aquifer system.  相似文献   
3.
The prime contribution of this assignment was to examine the hyperspectral remote sensing, based on iron ore minerals identification using spectral angle mapper (SAM) technique. Correlation analyses between field iron contents and environmental variables (soil, water, and vegetation) have been performed. Spectral feature fitting (SFF) and multi-range spectral feature fitting (MRSFF) methods were used for accuracy assessment in extracting iron ore minerals from Hyperion EO-1 data. Spectral inspections as a reference were used in SAM technique for image classification for iron ore minerals: Hematite (24.26%), Goethite (32.98%) and Desert (42.76). Iron ore minerals classification is justified by the United States Geological Survey (USGS) spectral library and field sample points. The regression analysis of USGS and Hyperion reflectance spectra has shown the moderate positive correlation. The regression analyses between iron ore contents and environmental parameters (soil, water, and vegetation) have shown the moderate negative correlation. The examination was significantly effectual in extracting iron ore minerals: Hematite (SFF RMSE?≤?0.51 MRSFF RMSE?≤?0.48), Goethite (SFF RMSE?≤?0.047 MRSFF RMSE?≤?0.438) and Desert (SFF RMSE?≤?0.63 and MRSFF RMSE?≤?0.50); and the MRSFF RMSE histograms indicate the above result likened to a conventional SFF RMSE. MRSFF RMS error result is best because multiple absorption features typically characterize spectral signatures. This analysis demonstrates the potential applicability of the methodology for iron minerals identification framework and iron minerals impact on environmental parameters.  相似文献   
4.
The present study focuses on an assessment of the impact of future water demand on the hydrological regime under land use/land cover (LULC) and climate change scenarios. The impact has been quantified in terms of streamflow and groundwater recharge in the Gandherswari River basin, West Bengal, India. dynamic conversion of land use and its effects (Dyna-CLUE) and statistical downscaling model (SDSM) are used for quantifying the future LULC and climate change scenarios, respectively. Physical-based semi-distributed model Soil and Water Assessment Tool (SWAT) is used for estimating future streamflow and spatiotemporally distributed groundwater recharge. Model calibration and validation have been performed using discharge data (1990–2016). The impacts of LULC and climate change on hydrological variables are evaluated with three scenarios (for the years 2030, 2050 and 2080). Temperature Vegetation Dyrness Index (TVDI) and evapotranspiration (ET) are considered for estimation of water-deficit conditions in the river basin. Exceedance probability and recurrence interval representation are considered for uncertainty analysis. The results show increased discharge in case of monsoon season and decreased discharge in case of the non-monsoon season for the years 2030 and 2050. However, a reverse trend is obtained for the year 2080. The overall increase in groundwater recharge is visible for all the years. This analysis provides valuable information for the irrigation water management framework.  相似文献   
5.
An attempt has been made to identify plausible groundwater potential zones (GWPZ) based on Grey Analytic Hierarchy Process Method (Grey-AHP) using integrated remote sensing and geographic information system. Grey-AHP combines the advantages of classical analytic hierarchy process and grey clustering method for accurate estimation of weight coefficients. The method also examines the effectiveness of GWPZ identification process. The proposed methodology has been applied to the Hirakud canal command area, Odisha (India). Feature layers [e.g. soil type, geology] are utilized for groundwater potential index (GWPI) calculation. The resulting GWPI map has been classified into three GWPZ namely: good, moderate and poor. Effectiveness based on grey clustering method is found to be in between ‘better’ and ‘common’ classes. Value of coefficient of determination (R2 = 0.865) supports the obtained effectiveness evaluation result. This analysis demonstrates the potential applicability of the methodology for a general aquifer system.  相似文献   
6.

Any sustainable resource utilization plan requires evaluation of the present and future environmental impact. The present research focuses on future scenario generation of environmental vulnerability zones based on grey analytic hierarchy process (grey-AHP). Grey-AHP combines the advantages of grey clustering method and the classical analytic hierarchy process (AHP). Environmental vulnerability index (EVI) considers twenty-five natural, environmental and anthropogenic parameters, e.g. soil, geology, aspect, elevation, slope, rainfall, maximum and minimum temperature, normalized difference vegetation index, drainage density, groundwater recharge, groundwater level, groundwater potential, water yield, evapotranspiration, land use/land cover, soil moisture, sediment yield, water stress, water quality, storage capacity, land suitability, population density, road density and normalized difference built-up index. Nine futuristic parameters were used for EVI calculation from the Dynamic Conversion of Land-Use and its Effects, Model for Interdisciplinary Research on Climate 5 and Soil and Water Assessment Tool. The resulting maps were classified into three classes: “high”, “moderate” and “low”. The result shows that the upstream portion of the river basin comes under the high vulnerability zone for the years 2010 and 2030, 2050. The effectiveness of zonation approach was between “better” and “common” classes. Sensitivity analysis was performed for EVI. Field-based soil moisture point data were utilized for validation purpose. The resulting maps provide a guideline for planning of detailed hydrogeological studies.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号