首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
地球物理   2篇
地质学   17篇
海洋学   1篇
自然地理   15篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1978年   2篇
  1972年   1篇
排序方式: 共有35条查询结果,搜索用时 593 毫秒
1.
Two widely-used techniques to estimate the volume of remaining oil and gas resources are discovery process modeling and geologic assessment. Both were used in a recent national assessment of oil and gas resources of the United States. Parallel estimates were obtained for 27 provinces. Geological-based estimates can typically see into areas not available to discovery process models (that is areas with little or no exploration history) and thus, on average, yield higher estimates. However, a linear relation does exist between the mean estimates obtained from these two methods. In addition, other variables were found in a multiple regression model that explained much of the difference. Thus, it is possible to perform discovery process modeling and adjust the estimates to yield results that might be expected from geological-based assessments.  相似文献   
2.
Natural Resources Research - Exploration ventures in frontier areas have high risks. Before committing to them, firms prepare regional resource assessments to evaluate the potential payoffs. With...  相似文献   
3.
4.
5.
6.
If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions.This paper was presented at Emerging Concepts, MGUS-87 Conference, Redwood City, California, 13–15 April 1987.  相似文献   
7.
The modified Arps-Roberts Discovery Process Modeling System [ARDS (Ver. 4.01)] has recently been upgraded [ARDS (Ver. 5.0)] and applied to a wide variety of field discovery and wildcat drilling data with differing characteristics. ARDS is designed to forecast the number and sizes of undiscovered fields in an exploration play or basin by using historical drilling and discovery data. Fields used as input may be grown or ungrown. Two models for field growth—one offshore and the other onshore—have been implemented (Schuenemeyer and Drew, 1996). Uncertainty attributable to field growth is estimated via simulation. This upgrade of ARDS has been designed to handle situations when the data cannot be partitioned into homogeneous regions, but where estimation of the number of remaining oil and gas fields is still meaningful. In this upgrade of ARDS, many restrictions, which include those on the number of fields and wildcat wells required to forecast the size distribution of the oil and gas fields that remain to be discovered in an exploration play, a basin, or other target area, have been removed. In addition, flexibility has been gained by reforming the criteria for convergence of the model. In all, 32 basins and subbasins in South America were examined, 18 of which had sufficient data to be amenable to forecasting the field-size distribution of undiscovered oil and gas resources directly by using the Petroconsultants Inc. (1993) field discovery and wildcat drilling data. Overall, ARDS (Ver. 5.0) performed well in estimating the field-size distribution of undiscovered oil and gas resources in the 18 basins and subbasins. The aggregate volume of undiscovered petroleum resources was characterized by using histograms of the distribution of resources and the following five statistics: the mean, the 80% trimmed mean, and the 10,50 (median), and 90 quantiles. More than 38 billion barrels of oil equivalent (BOE) in fields that contain more than one million BOE individually were forecast as remaining to be discovered. The largest basin, the Campos (Brazil), is forecast to contain nearly 10 billion BOE undiscovered resources. The East Venezuela Basin (excluding the Furrial Trend) is forecast to contain about 8 billion BOE; the Austral-Magallanes Basin (Argentina and Chile), about 7 billion BOE; and the Napo (Colombia and Ecuador) and the Neuquen (Argentina) Basins, between 3 billion and 4 billion BOE. A subset of these basins that illustrate the increased flexibility of ARDS are discussed.  相似文献   
8.
A forecast of the future rates of discovery of crude oil and natural gas for the 123,027-km2 Miocene/Pliocene trend in the Gulf of Mexico was made in 1980. This forecast was evaluated in 1988 by comparing two sets of data: (1) the actual versus the forecasted number of fields discovered, and (2) the actual versus the forecasted volumes of crude oil and natural gas discovered with the drilling of 1,820 wildcat wells along the trend between January 1, 1977, and December 31, 1985. The forecast specified that this level of drilling would result in the discovery of 217 fields containing 1.78 billion barrels of oil equivalent; however, 238 fields containing 3.57 billion barrels of oil equivalent were actually discovered. This underestimation is attributed to biases introduced by field growth and, to a lesser degree, the artificially low, pre-1970's price of natural gas that prevented many smaller gas fields from being brought into production at the time of their discovery; most of these fields contained less than 50 billion cubic feet of producible natural gas.  相似文献   
9.
A method is presented for the estimation of undiscovered oil and gas resources in partially explored areas where economic truncation has caused some discoveries to go unreported; therefore distorting the relationship between the observed discovery size distribution and the parent or ultimate field size distribution. The method is applied to the UK's northern and central North Sea provinces. A discovery process model is developed to estimate the number and size distribution of undiscovered fields in this area as of 1983. The model is also used to forecast the rate at which fields will be discovered in the future. The appraisal and forecasts pertain to fields in size classes as small as 24 million barrels of oil equivalent (BOE). Estimated undiscovered hydrocarbon resources of 11.79 billion BOE are expected to be contained in 170 remaining fields. Over the first 500 wildcat wells after 1 January 1983, the discovery rate in this areas is expected to decline by 60% from 15 million BOE per wildcat well to six million BOE per wildcat well.  相似文献   
10.
Based on the methods of Fisher and Watson,Fortran iv computer programs are presented for the following analyses of directional observations on the sphere: (1) to determine if points are randomly distributed; (2) to estimate the azimuth and inclination of the center (mean direction) of a cluster and to estimate the precision (closeness) with which points are clustered; (3) to determine if two or more clusters have the same mean direction; (4) to determine if two clusters have the same precision of clustering; and (5) to locate the pole of a greatcircle girdle of points. Limitations of these analyses for undirected directional observations on the hemisphere also are given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号