首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   5篇
  国内免费   1篇
测绘学   5篇
大气科学   1篇
地球物理   22篇
地质学   20篇
海洋学   3篇
天文学   1篇
自然地理   5篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   6篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1987年   4篇
  1984年   1篇
  1980年   1篇
排序方式: 共有57条查询结果,搜索用时 360 毫秒
1.
We investigate the formation process and pathways of deep water masses in a coupled ice–ocean model of the Arctic and North Atlantic Oceans. The intent is to determine the relative roles of these water masses from the different source regions (Arctic Ocean, Nordic Seas, and Subpolar Atlantic) in the meridional overturning circulation. The model exhibits significant decadal variability in the deep western boundary current and the overturning circulation. We use detailed diagnostics to understand the process of water mass formation in the model and the resulting effects on the North Atlantic overturning circulation. Particular emphasis is given to the multiple sources of North Atlantic Deep Water, the dominant deep water masses of the world ocean. The correct balance of Labrador Sea, Greenland Sea and Norwegian Sea sources is difficult to achieve in climate models, owing to small-scale sinking and convection processes. The global overturning circulation is described as a function of potential temperature and salinity, which more clearly signifies dynamical processes and clarifies resolution problems inherent to the high latitude oceans. We find that fluxes of deep water masses through various passages in the model are higher than observed estimates. Despite the excessive volume flux, the Nordic Seas overflow waters are diluted by strong mixing and enter the Labrador Sea at a lighter density. Through strong subpolar convection, these waters along with other North Atlantic water masses are converted into the densest waters [similar density to Antarctic Bottom Water (AABW)] in the North Atlantic. We describe the diminished role of salinity in the Labrador Sea, where a shortage of buoyant surface water (or excess of high salinity water) leads to overly strong convection. The result is that the Atlantic overturning circulation in the model is very sensitive to the surface heat flux in the Labrador Sea and hence is correlated with the North Atlantic Oscillation. As strong subpolar convection is found in other models, we discuss broader implications.  相似文献   
2.
The southern Irumide Belt (SIB) is an ENE–WSW-trending,late Mesoproterozoic orogenic belt located between the Congo–Tanzania–Bangweulu(CTB) and Kalahari cratons in central southern Africa. It isseparated from the late Mesoproterozoic Irumide Belt (IB) tothe north by Permo-Triassic graben, raising the possibilitythat the younger rifts reactivated a suture between the twobelts that has been rendered cryptic as a result of youngerKaroo cover. Both belts are dominated by calc-alkaline gneisses,but in addition the SIB contains abundant metavolcanic and metasedimentaryrocks. In this study we present detailed geochemical, isotopicand geochronological data for volcanic and plutonic lithologiesfrom the southernmost part of the SIB, the Chewore–RufunsaTerrane. This terrane comprises a wide variety of supracrustalto mid-crustal rocks that have major- and trace-element compositionssimilar to magmas formed in present-day subduction zones. Chondrite-normalizedrare earth element (REE) profiles and whole-rock Sm–Ndisotope compositions indicate that the parental supra-subductionmelts interacted with, and were contaminated by sialic continentalcrust, implying a continental-margin-arc setting. Secondaryionization mass spectrometry dating of magmatic zircon has yieldedcrystallization ages between c. 1095 and 1040 Ma, similar toelsewhere in the SIB. U–Pb dating and in situ Lu–Hfisotopic analyses of abundant xenocrystic zircon extracted fromthe late Mesoproterozoic granitoids indicate that the contaminantcontinental basement was principally Palaeoproterozoic in ageand had a juvenile isotopic signature at the time of its formation.These data are in contrast to those for the IB, which is characterizedby younger, c. 1020 Ma, calc-alkaline gneisses that formed bythe direct recycling of Archaean crust without significant additionof any juvenile material. We suggest that the SIB developedby the subduction of oceanic crust under the margin of an unnamedcontinental mass until ocean closure at c. 1040 Ma. Subsequentcollision between the SIB and the CTB margin led to the cessationof magmatism in the SIB and the initiation of compression andcrustal melting in the IB. KEY WORDS: geochemistry; Mesoproterozoic; SHRIMP zircon U–Pb dating; Sm–Nd isotopes; Southern Irumide Belt  相似文献   
3.
4.
The arc-front volcanoes of Sumisu (31·5°N, 140°E)and Torishima (30·5°N, 140·3°E) in thecentral Izu–Bonin arc are similar in size and rise asrelatively isolated edifices from the seafloor. Together theyprovide valuable along-arc information about magma generationprocesses. The volcanoes have erupted low-K basalts originatingfrom both wet and dry parental basaltic magmas (low-Zr basaltsand high-Zr basalts, respectively). Based on models involvingfluid-immobile incompatible element ratios (La/Sm), the parentalbasalts appear to result from different degrees of partial meltingof the same source mantle (20% and 10% for wet and dry basaltmagmas, respectively). Assuming that the wet basalts containgreater abundances of slab-derived components than their drycounterparts, geochemical comparison of these two basalt typespermits the identification of the specific elements involvedin fluid transport from the subducting slab. Using an extensiveset of new geochemical data from Torishima, where the top ofthe downgoing slab is about 100 km deep, we find that Cs, Pb,and Sr are variably enriched in the low-Zr basalts, which cannotbe accounted for by fractional crystallization or by differencesin the degree of mantle melting. These elements are interpretedto be selectively concentrated in slab-derived metasomatic fluids.Variations in K, high field strength element and rare earthelement concentrations are readily explained by variations inthe degree of melting between the low- and high-Zr basalts;these elements are not contained in the slab-derived fluids.Rb and Ba exhibit variable behaviour in the low-Zr basalts,ranging from immobile, similar to K, to mildly enriched in somelow-Zr basalts. We suggest that the K-rich mica, phengite, playsan important role in determining the composition of fluids releasedfrom the downgoing slab. In arc-front settings, where slab depthis 100 km, phengite is stable, and the fluids released fromthe slab contain little K. In back-arc settings, however, wherethe slab is at 100–140 km depth, phengite is unstable,and K-rich fluids are released. We conclude that cross-arc variationsin the K content of arc basalts are probably related to differingcompositions of released fluids or melts rather than the widelyheld view that such variations are controlled by the degreeof partial melting. KEY WORDS: arc volcano; degrees of melting; mantle wedge; water; wet and dry basalts  相似文献   
5.
Small scale agricultural earth dams have been damaged by several past earthquakes. Damage to earth dams occurred at distances from the epicentre that increased in proportion to the scale of the earthquakes. On studying the damage a constant relation between the magnitude of the earthquake and maximum epicentral distance where the damage occurred was obtained. This relationship is similar to that obtained between the magnitude and the maximum epicentral distance at which liquefaction occurs. This, and the fact that earth dams which have been damaged several times due to liquefaction were near the critical epicentral distance, suggests that liquefaction of the foundation ground is the main cause of damage to earth dams.  相似文献   
6.
Antarctic climate changes influence environmental changes at both regional and local scales. Here we report Holocene paleolimnological changes in lake sediment core Sk4C-02 (length 378.0 cm) from Lake Skallen Oike in the Soya Kaigan region of East Antarctica inferred from analyses of sedimentary facies, a range of organic components, isotope ratios of organic carbon and nitrogen, and carbon-14 dating by Tandetron accelerator mass spectrometry. The sediment core was composed of clayish mud (378.0–152.5 cm) overlain by organic sediments (152.5 cm-surface). The age of the surface and the core bottom were 150 (AD1950-1640) and ca. 7,030 ± 73 calibrated years before present (cal BP), respectively, and the mean sedimentation rate was estimated to be 0.55 mm/year. Multi-proxy analyses revealed that the principal environmental change in the core is a transition from marine to lacustrine environments which occurred at a depth of 152.5 cm (ca. 3,590 cal BP). This was caused by relative sea level change brought about by ongoing retreat of glaciers during the mid-Holocene warming of Antarctica, and ongoing isostatic uplift which outpaced changes in global (eustatic) sea level. The mean isostatic uplift rate was calculated to be 2.8 mm/year. The coastal marine period (378.0–152.5 cm, ca. 7,030–3,590 cal BP) was characterized by low biological production with the predominance of diatoms. During the transition period from marine to freshwater conditions (152.5-approximately 135 cm, ca. 3,590–3,290 cal BP) the lake was stratified with marine water overlain by freshwater, with a chemocline and an anoxic (sulfidic) layer in the bottom of the photic zone. Green sulfur bacteria and Cryptophyta were the major photosynthetic organisms. The Cryptophyta appeared to be tolerant of the moderate salinity and stratified water conditions. The lacustrine period (approximately 135 cm-surface, ca. 3,290 cal BP-present) was characterized by high biological production by green algae (e.g. Comarium clepsydra and Oedegonium spp.) with some contributions from cyanobacteria and diatoms. Biological production during this period was 8.7 times higher than during the coastal marine period.  相似文献   
7.
The article investigates the potential and challenges of integrating geography with other school subjects. The analysis is based on the outcomes of a course that introduced the principles of discipline-based integration. The course was included in multicultural-class teacher education programme at the University of Helsinki. For a project within the course, the students worked in small groups and made short films that integrated three subjects – geography, physics, and visual arts – in order to evoke questions of space in children's minds. The students were asked to write essays in which they analysed their understanding of space from the three subjects’ viewpoints, describe the aims and contents of their short films, and lastly reflect on their experiences of the potential and possible problems in discipline integration. In this article, the authors analyse the students’ experience of the integration between the geography, physics, and visual arts. In general, the students experienced discipline-based integration as an interesting way of working. Moreover, the project seemed to deepen their understanding of different grounds for integrative pedagogy. Although the students reported some difficulties regarding the subject knowledge required for fruitful integration, the process enabled them to construct a better understanding of the identity of each discipline.  相似文献   
8.
We examined how and why dominant peak-flow runoff-generation mechanisms differ among neighbouring headwater catchments. We monitored runoff and groundwater levels and performed terrain analyses in a granitic second-order catchment and its four neighbouring subcatchments in the Kiryu Experimental Watershed in Japan. Our analysis of lag times from peak rainfall to peak runoff suggests differences in the dominant peak-flow runoff-generation mechanisms among the five catchments. For two of the three zero-order catchments, with few perennial groundwater bodies, subsurface flow from hillslopes was the dominant mechanism at some events. However, the dominant mechanisms were channel precipitation and riparian runoff at almost all events in first- and second-order catchments and in the third zero-order catchment, which has a large perennial groundwater body over a bedrock depression in the riparian zone. In this zero-order catchment, the quick-flow ratio was the smallest of the five catchments because subsurface flow from the hillslope was buffered at the riparian zone. These facts suggest that the channel length, riparian buffering, and hillslope connectivity were the factors governing the different dominant peak-flow runoff-generation mechanisms among the catchments. Riparian buffering was affected, not only by surface topography, but also by bedrock topography and bedrock groundwater (BGW) dynamics. Our findings indicate that both of BGW dynamics and topography are important for catchment classification, and the relative importance of topography increases with the change from baseflow to stormflow. Furthermore, mismatching between a geographic source and a flow path resulted in different catchment classifications depending on the approach. Therefore, multiple approaches during both baseflow and stormflow periods are necessary for catchment classification to apply information obtained from one headwater catchment to other headwater catchments within the same region.  相似文献   
9.
To evaluate the effects of hillslope topography on storm runoff in a weathered granite mountain, discharge rate, soil pore water pressures, and water chemistry were observed on two types of hillslope: a valley‐head (a concave hillslope) and a side slope (a planar hillslope). Hydrological responses on the valley‐head and side slope reflected their respective topographic characteristics and varied with the rainfall magnitude. During small rainfall events (<35 mm), runoff from the side slope occurred rapidly relative to the valley‐head. The valley‐head showed little response in storm runoff. As rainfall amounts increased (35–60 mm), the valley‐head yielded a higher flow relative to the side slope. For large rainfall events (>60 mm), runoff from both hillslopes increased with rainfall, although that from the valley‐head was larger than that from the side slope. The differences in the runoff responses were caused by differences in the roles of lower‐slope soils and the convergence of the hillslope. During small rainfall events, the side slope could store little water; in contrast, all rainwater could be stored in the soils at the valley‐head hollow. As the amount of rainfall increased, the subsurface saturated area of the valley‐head extended from the bottom to the upper portion of the slope, with the contributions of transient groundwater via lateral preferential flowpaths due to the high concentration of subsurface water. Conversely, saturated subsurface flow did not contribute to runoff responses, and the subsurface saturated area at the side slope did not extend to the upper slope for the same storm size. During large rainfall events, expansion of the subsurface saturated area was observed in both hillslopes. Thus, differences in the concentration of subsurface water, reflecting hillslope topography, may create differences in the extension of the subsurface saturated area, as well as variability in runoff responses. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
10.
The Kiryu Experimental Catchment (KEW) is a small (5.99 ha) forest catchment located in Shiga Prefecture, central Japan (34°58′ N, 136°00′ E; www.bluemoon.kais.kyoto-u.ac.jp/kiryu/contents.html ). Around this area, forest devastation occurred from ca. 1250 to ca. 150 years ago because of overuse of forest and timbers. Then, hillside forestation was carried out for more than 100 years to prevent soil erosion and support the timber industry, and consequently, most of this area is now covered with plantation forests mainly by Chamaecyparis obtusa Sieb. et Zucc. (Japanese cypress) planted around 1960's. This plantation forest is not actively managed. The KEW is one of the leading experimental forests with long-term monitoring data in Japan. Research in the KEW began in 1967 to elucidate the hydrological and biogeochemical processes in the forested catchment in relation to climate, geology, soil, and vegetation growth. Since then, the long-term hydrological data of precipitation, runoff and sediment transport are continuously monitoring. In this study, we provide the data and preliminarily discuss the rainfall–runoff patterns and sediment transport through 50 years in the KEW. The annual precipitation and the maximum daily rainfall have been greater than the average over the last decade. In response to the rainfall patterns, the ratio of annual direct runoff to precipitation was also larger in the last decade. The sediment transport in this decade was consequently larger than the preceding decades. Our data presented here suggest that a close relationship exists between the climate condition, rainfall–runoff response, sediment dynamics, as well as a slowly progressing change of forest condition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号