首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
地球物理   4篇
地质学   8篇
海洋学   1篇
天文学   7篇
自然地理   4篇
  2018年   1篇
  2016年   1篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2005年   2篇
  2004年   2篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1983年   2篇
  1978年   1篇
  1976年   1篇
  1966年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Zooplankton collected from vertical net tows were related to the environmental variables from 98 lakes from the Interior Plateau of British Columbia. Canonical correspondence analysis showed that both salinity and ionic composition (pH and Mg) of the lake-water made major and significant contributions to the first two ordination axes (=0.42 and 0.11 respectively,P<0.05). BothArtemia franciscana andMoina hutchinsoni had their highest relative abundance in meso-hypersaline waters. However,Artemia franciscana preferred waters that were higher in Mg and Ca, whileMoina hutchinsoni was found in waters that were lower in Mg and Ca. Similarly, at intermediate salinities,Daphnia pulex and the calanoid copepods preferred waters slightly lower in Mg and Ca, whereasCeriodaphnia laticaudata andSimocephalus spp. were relatively more common in waters higher in Mg and Ca. Because the freshest lakes studied varied much less in ionic composition, the zooplankton in these lakes did not show a preference to ionic composition. As expected, multi-generic groups, such as the calanoid copepods, cyclopoid copepods and nauplii, had wider tolerances to conductivity than groups identified to lower taxonomic levels. Significant weighted-averaging regression and calibration models of conductivity were developed based on zooplankton species composition from the study lakes (r 2=0.56,P<0.05). Samples composed largely of multi-generic taxa yielded the worst estimates of salinity in the reconstruction model. This study suggests that zooplankton community composition may be developed into a useful proxy for paleosalinity reconstruction.  相似文献   
2.
3.
One important, almost ubiquitous, tool for understanding the surfaces of solid bodies throughout the solar system is the study of impact craters. While measuring a distribution of crater diameters and locations is an important tool for a wide variety of studies, so too is measuring a crater's “depth.” Depth can inform numerous studies including the strength of a surface and modification rates in the local environment. There is, however, no standard data set, definition, or technique to perform this data-gathering task, and the abundance of different definitions of “depth” and methods for estimating that quantity can lead to misunderstandings in and of the literature. In this review, we describe a wide variety of data sets and methods to analyze those data sets that have been, are currently, or could be used to derive different types of crater depth measurements. We also recommend certain nomenclature in doing so to help standardize practice in the field. We present a review section of all crater depths that have been published on different solar system bodies which shows how the field has evolved through time and how some common assumptions might not be wholly accurate. We conclude with several recommendations for researchers which could help different data sets to be more easily understood and compared.  相似文献   
4.
Regional dolerite dykes of Mesozoic age in western Dronning Maud Land are variable in both major and trace element composition and include picritic types (MgO>18 wt%). The range in incompatible element concentrations is considerable (e.g. Zr 40–478 ppm) and shows little correlation with MgO content. Both high-and low-Ti, Zr (HTZ and LTZ) magma types are present and there is a spread of compositions between these types. Major element oxide variations in dykes having MgO>10 wt% indicate that olivine and orthoyproxene fractionation occurred, presumably at an early high-pressure stage of magma evolution. Major element oxide variations in dykes having MgO<10 wt% indicate control by olivine and clinopyroxene. A minority of the more evolved dykes are compositionally similar to the nearby Kirwan basalts, but the majority cannot be related to the Kirwan basalts by any simple petrogenetic process as they contain higher concentrations of incompatible elements and have higher Mg-numbers. The HTZ Dronning Maud Land dolerites have incompatible trace element concentrations which are very similar to the HTZ basalt magma types of the Karoo of southern Africa with the exception of lower K and Rb in DML dolerites. The HTZ dolerites occur in the part of Dronning Maud Land which appears to have been tectonically stable since the Archaean and are not found to intrude the surrounding high-grade (about 1000 Ma) metamorphic rocks of the Sverdrup Group. These data provide qualified support for models which seek to relate spatially the HTZ Mesozoic basalt types of Gondwana to sources beneath stable Archaean cratons.  相似文献   
5.
6.
7.
From photogrammetric analysis of stereo images of Mercury obtained during three MESSENGER flybys, we have produced three digital terrain models (DTMs) that have a grid spacing of 1 km and together cover 30% of the planet's surface. The terrain models provide a rich source of information on the morphology of Mercury's surface, including details of tectonic scarp systems as well as impact craters and basins. More than 400 craters larger than 15 km in diameter are included in the models. Additionally, the models provide important test cases for the analysis of stereo image data to be collected during MESSENGER's orbital mission phase. Small lateral offsets and differences in trends between stereo DTMs and laser altimeter profiles may be due to remaining errors in spacecraft position, instrument pointing, or Mercury coordinate knowledge. Such errors should be resolved during the orbital mission phase, when more joint analyses of data and detailed orbit modeling will be possible.  相似文献   
8.
The Mercury Laser Altimeter on the NASA MESSENGER mission has ranged to several ridges and lobate scarps during two equatorial flybys of the planet Mercury. The tectonic features sampled, like others documented by spacecraft imaging and Earth-based radar, are spatially isolated and have vertical relief in excess of 1 km. The profiles also indicate that the faulting associated with their formation penetrated to tens of kilometers depth into the lithosphere and accommodated substantial shortening. To gain insight into the mechanism(s) of strain accommodation across these structures, we perform analytical and numerical modeling of representative dynamic localization mechanisms. We find that ductile localization due to shear heating is not favored, given our current understanding of thermal gradients and shallow thermal structure of Mercury at the time of ridge and scarp formation, and is likely to be of secondary importance at best. Brittle localization, associated with loss of resistance during fault development or with velocity weakening during sliding on mature faults, is weakly localizing but permits slip to accumulate over geological time scales. The range of shallow thermal gradients that produce isolated faults rather than distributed fault sets under the assumption of modest fault weakening is consistent with previous models for Mercury’s early global thermal history. To be consistent with strain rates predicted from thermal history models and the amount of shortening required to account for the underlying large-offset faults, ridges and scarps on Mercury likely developed over geologically substantial time spans.  相似文献   
9.
Pre-volcanic structure of the basement influences volcanism distribution and avalanche generation in volcanic edifices. Therefore, systematic studies of basement structure below volcanic chains are necessary to understand the deformation effects observed in the surface and vice versa. Based on a compilation of pre-existing data, interpretation of aerial photographs and satellite images, and a collection of structural data we analyzed morphological and structural features of the Cofre de Perote–Pico de Orizaba (CP–PO) volcanic chain and its basement. We have identified three sets of regional lineaments that are related to basement trends. (1) NW 55° SE fractures are parallel to anticline folds observed in Cretaceous rocks that originated during Laramide shortening. These folds present an abrupt morphology observed only in the eastern flank but that is likely to continue below the volcanic chain. (2) NE 55° SW fractures are parallel to normal faults at the basement. We infer that these basement faults confine the CP–PO chain within a stepped graben with a total normal displacement of about 400 m. These faults have been active through time since they have affected volcanic deposits and induced the emplacement of monogenetic vents. Notably, lineaments of monogenetic vents concentrate where the basement is relatively shallow. (3) Another set of faults, oriented N–S, has been observed affecting the scarce basement outcrops at the western flank of the chain covered by lacustrine deposits. Lineaments measured in the volcanic edifice of Pico de Orizaba correlate with the regional trends.In particular, the NE 55° SW alignment of monogenetic vents and fractures at Pico de Orizaba suggest that the same dike trend exists within the volcanic edifice. A normal fault with similar orientation was documented at the NE continuation of an alignment crossing the volcanic edifice along the Jamapa canyon. In the absence of magmatic activity related to collapses, the displacement of NE 55° SW faults represents a potential triggering mechanism for generating avalanches at Pico de Orizaba volcano. Instability is enhanced by the presence of N–S trending fractures crossing the entire volcanic edifice and E–W fractures affecting only the present day cone. We conclude that mechanical instability of the volcanic chain is influenced by the basement structure heterogeneity, but further detailed studies are necessary at individual volcanoes to evaluate their effects on volcano deformation.  相似文献   
10.
Outcrop exposures of sedimentary rocks at the Opportunity landing site (Meridiani Planum) form a set of genetically related strata defined here informally as the Burns formation. This formation can be subdivided into lower, middle, and upper units which, respectively, represent eolian dune, eolian sand sheet, and mixed eolian sand sheet and interdune facies associations. Collectively, these three units are at least 7 m thick and define a “wetting-upward” succession which records a progressive increase in the influence of groundwater and, ultimately, surface water in controlling primary depositional processes.The Burns lower unit is interpreted as a dry dune field (though grain composition indicates an evaporitic source), whose preserved record of large-scale cross-bedded sandstones indicates either superimposed bedforms of variable size or reactivation of lee-side slip faces by episodic (possibly seasonal) changes in wind direction. The boundary between the lower and middle units is a significant eolian deflation surface. This surface is interpreted to record eolian erosion down to the capillary fringe of the water table, where increased resistance to wind-induced erosion was promoted by increased sediment cohesiveness in the capillary fringe. The overlying Burns middle unit is characterized by fine-scale planar-laminated to low-angle-stratified sandstones. These sandstones accumulated during lateral migration of eolian impact ripples over the flat to gently undulating sand sheet surface. In terrestrial settings, sand sheets may form an intermediate environment between dune fields and interdune or playa surfaces. The contact between the middle and upper units of the Burns formation is interpreted as a diagenetic front, where recrystallization in the phreatic or capillary zones may have occurred. The upper unit of the Burns formation contains a mixture of sand sheet facies and interdune facies. Interdune facies include wavy bedding, irregular lamination with convolute bedding and possible small tepee or salt-ridge structures, and cm-scale festoon cross-lamination indicative of shallow subaqueous flows marked by current velocities of a few tens of cm/s. Most likely, these currents were gravity-driven, possibly unchannelized flows resulting from the flooding of interdune/playa surfaces. However, evidence for lacustrine sedimentation, including mudstones or in situ bottom-growth evaporites, has not been observed so far at Eagle and Endurance craters.Mineralogical and elemental data indicate that the eolian sandstones of the lower and middle units, as well as the subaqueous and eolian deposits of the Burns upper unit, were derived from an evaporitic source. This indirectly points to a temporally equivalent playa where lacustrine evaporites or ground-water-generated efflorescent crusts were deflated to provide a source of sand-sized particles that were entrained to form eolian dunes and sand sheets. This process is responsible for the development of sulfate eolianites at White Sands, New Mexico, and could have provided a prolific flux of sulfate sediment at Meridiani. Though evidence for surface water in the Burns formation is mostly limited to the upper unit, the associated sulfate eolianites provide strong evidence for the critical role of groundwater in controlling sediment production and stratigraphic architecture throughout the formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号