首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
测绘学   2篇
大气科学   1篇
地球物理   1篇
地质学   1篇
综合类   1篇
自然地理   4篇
  2021年   3篇
  2020年   2篇
  2013年   3篇
  2012年   1篇
  1991年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.

This paper describes the main features related to lateral displacements with depth after successive lateral loading–unloading cycles applied to the top of reinforced-concrete flexible bored piles embedded in naturally bonded residual soil. The bored piles under study have a cylindrical shape, with 0.40-m in diameter and 8.0-m in length. Both bored piles types (P1 and P2) include an embedded steel pipe section in their center as longitudinal steel reinforcements: pile type P1 has another 16 steel rods as steel reinforcement to concrete while pile type P2 has no further steel reinforcement. Pile type P1 has three times as much stiffness (EI) and four and a half times the plastic moment (My) than pile type P2. A similar load–displacement performance was observed at initial loads as for small displacements of both piles. At this initial loading stage, the response of the reinforced concrete piles is a function of the soil characteristics and of a linear elastic pile deformation. During this stage, piles can even be understood as probes for evaluating soil reactions. For larger horizontal displacements, after the concrete section starts undergoing large deformations, approaching the ultimate bending moment, pile behavior and consequently the load–displacement relation starts to diverge for both piles. For pile P1 the values of relevant lateral displacements are extended to about 2.5-m in depth, while for pile P2 lateral displacements are mostly constrained to about 2.0-m in depth. Measurements of horizontal displacements of pile P1 against depth recorded with a slope indicator show that, after unloading, lateral loads at distinct stages (small and near failure loads), exhibits a much higher elastic phase of the system response. An analytical fitting model of soil reaction is proposed based on the measured displacements from slope indicator. The integration of a continuous model proposed for the soil reaction agrees fairly well with the measured displacements up to moments close to plastic limit. Results of load–displacement show that the stiffer pile (P1) was able to mobilize twice as much lateral load compared to pile P2 for a service limit displacement of about 20 mm. The paper shows results that enable the isolation of the structural variable through real scale pile load tests, thus granting understanding of its importance and enabling its quantitative visualization in examples of piles embedded in residual soil sites.

  相似文献   
2.
3.
4.
Minibasins are fundamental components of many salt-bearing sedimentary basins, where they may host large volumes of hydrocarbons. Although we understand the basic mechanics governing their subsidence, we know surprisingly little of how minibasins subside in three-dimensions over geological timescales, or what controls such variability. Such knowledge would improve our ability to constrain initial salt volumes in sedimentary basins, the timing of salt welding and the distribution and likely charging histories of suprasalt hydrocarbon reservoirs. We use 3D seismic reflection data from the Precaspian Basin, onshore Kazakhstan to reveal the subsidence histories of 16, Upper Permian-to-Triassic, suprasalt minibasins. These minibasins subsided into a Lower-to-Middle Permian salt layer that contained numerous relatively strong, clastic-dominated minibasins encased during an earlier, latest Permian phase of diapirism; because of this, the salt varied in thickness. Suprasalt minibasins contain a stratigraphic record of symmetric (bowl-shaped units) and then asymmetric (wedge-shaped units) subsidence, with this change in style seemingly occurring at different times in different minibasins, and most likely prior to welding. We complement our observations from natural minibasins in the Precaspian Basin with results arising from new physical sandbox models; this allows us to explore the potential controls on minibasin subsidence patterns, before assessing which of these might be applicable to our natural example. We conclude that due to uncertainties in the original spatial relationships between encased and suprasalt minibasins, and the timing of changes in style of subsidence between individual minibasins, it is unclear why such complex temporal and spatial variations in subsidence occur in the Precaspian Basin. Regardless of what controls the observed variability, we argue that vertical changes in minibasin stratigraphic architecture may not record the initial (depositional) thickness of underlying salt or the timing of salt welding; this latter point is critical when attempting to constrain the timing of potential hydraulic communication between sub-salt source rocks and suprasalt reservoirs. Furthermore, temporal changes in minibasin subsidence style will likely control suprasalt reservoir distribution and trapping style.  相似文献   
5.
The campo rupestre sensu lato is a vegetation type that occurs in South American mountains, supports a distinctive flora characterized by high rates of endemism, high herbaceous species richness and often-neglected but also species-rich of the arboreal stratum. We aimed to investigate how environmental factors and elevation are associated with the distribution and diversity of woody species in different rupestrian vegetation types across South America. Using a database of 2,049 woody species from 185 sites across four vegetation types within the campo rupestre, we assessed how the vegetation types were grouped according to their floristic composition and number of shared indicator species, as well as by using different beta diversity indices. The most important variables from a set of 27 variables(e.g. altitude, geo-edaphic and climatic) explaining species distribution were identified using redundancy analysis(RDA) and variation partitioning methods. The distribution of vegetation types was related to both environmental and spatial fractions, with a set of 17 variables retained(e.g. rockiness, grass cover and temperature seasonality as the most important variables). There was an association between the floristic composition of each vegetation type and the elevation range. Although the identified vegetation types are floristically related, they are distinguished by exclusive and habitat-specialist woody species. This uniqueness of vegetation types should be considered in terms of complementarity for the conservation of campos rupestres.  相似文献   
6.
7.
In the field of biomass estimation, terrain radiometric calibration of airborne polarimetric SAR data for forested areas is an urgent problem. Illuminated area correction of σ -naught could not completely remove terrain features. Inspired by Small and Shimada, this paper tested gamma-naught on one mountainous forested area using airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar data and found it could remove most terrain features. However, a systematic increasing trend from far range to near range is found in airborne SAR cases. This paper made an attempt to use the relationship between distance to SAR sensor and γ-naught to calibrate γ -naught. Two quantitative evaluation methods are proposed. Experimental results demonstrate that variation of γ -naught can be constrained to a limited extent from near range to far range. Since this method is based on ground range images, it avoids complicated orthorectification.  相似文献   
8.
Abstract

Appropriate diffusion of geographic information technologies is hampered by lack of systematic research on factors and processes affecting diffusion, utilization and impact assessment of the technologies and by a variety of conceptual and methodological problems. Diffusion of innovation principles developed in other fields, in combination with methods developed within the field of management information systems, provide an important beginning for improved understanding. This paper focuses on gaps in knowledge which might be addressed within the geographic information field by analysis techniques and research methodologies used in the diffusion of innovations.  相似文献   
9.
In salt‐detached gravity‐gliding/spreading systems the detachment geometry is a key control on the downslope mobility of the supra‐salt sequence. Here, we used regional 3D seismic data to examine a salt‐stock canopy in the northern Gulf of Mexico slope, in an area where supra‐canopy minibasins subsided vertically and translated downslope above a complex base‐of‐salt. If thick enough, minibasins can interact with, and weld to, the base‐of‐salt and be obstructed from translating downslope. Based on the regional maps of the base of allochthonous salt and the base of the supra‐canopy sequence, the key controls on minibasin obstruction, we distinguished two structural domains in the study area: a highly obstructed domain and a highly mobile domain. Large‐scale translation of the supra‐canopy sequence is recorded in the mobile domain by a far‐travelled minibasin and a ramp syncline basin. These two structures suggest downslope translation on the order of 40 km from Plio‐Pleistocene to Present. In contrast, translation was impeded in the obstructed domain due to supra‐canopy bucket minibasins subsiding into feeders during the Pleistocene. As a result, we infer that differential translation occurred between the two domains and argue that a deformation area between two differentially translating supra‐canopy minibasin domains is difficult to recognize. However, characterizing domains according to base‐of‐salt geometry and supra‐canopy minibasin configuration can be helpful in identifying domains that may share similar subsidence and downslope translation histories.  相似文献   
10.
Salt-detached gravity gliding/spreading systems having a rugose base-of-salt display complex strain patterns. However, little was previously known about how welding of supra-salt minibasins to the sub-salt may influence both the downslope translation of minibasins on salt-detached slopes and the regional pattern of supra-salt strain. Using a regional 3D seismic reflection data set, we examine a large salt-stock canopy system with a rugose base on the northern Gulf of Mexico slope, on which minibasins both subside and translate downslope. Some minibasins are welded at their bases and others are not. We suggest that basal welds obstruct downslope translation of minibasins and control regional patterns of supra-canopy strain. The distribution of strain above the canopy is complex and variable. Each minibasin that becomes obstructed modifies the local strain field, typically developing a zone of shortening immediately updip and an extensional breakaway zone immediately downdip of the obstructed minibasin. This finding is corroborated by observations from a physical sandbox model of minibasin obstruction. We also find in our natural example that minibasins can be obstructed to different degrees, ranging from severe (e.g., caught in a feeder) to mild (e.g., welded to a flat or gently dipping base-of-salt). By mapping both the presence of obstructed minibasins and the relative degree of minibasin obstruction, we provide an explanation for the origin of complex 3-D strain fields on a salt-detached slope and, potentially, a mechanism that explains differential downslope translation of minibasins. In minibasin-rich salt-detached slope settings, our results may aid: i) structural restorations and regional strain analyses; ii) prediction of subsalt relief in areas of poor seismic imaging; and iii) prediction of stress fields and borehole stability. Our example is detached on allochthonous salt and where the base-of-salt is rugose, with the findings applicable to other such systems worldwide (e.g., Gulf of Mexico; Scotian Margin, offshore eastern Canada). However, our findings are also applicable to systems where the salt is autochthonous but has significant local basal relief (e.g., Santos Basin, Brazil; Kwanza Basin, Angola).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号