首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  国内免费   2篇
测绘学   6篇
大气科学   4篇
地球物理   2篇
地质学   14篇
海洋学   1篇
  2022年   1篇
  2021年   1篇
  2018年   3篇
  2017年   4篇
  2016年   1篇
  2014年   4篇
  2013年   1篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2000年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有27条查询结果,搜索用时 218 毫秒
1.
Systematic seasonal variations of suspended particulate matter (SPM) along a 44-km transect of the Mandovi estuary reveal that the concentrations of SPM are low at river-end stations, increase generally seaward, and are highest at sea-end stations of the estuary. An estuarine turbidity maximum (ETM) occurs at sea-end stations during June–September when river discharge is high and also in February–May when river discharge is low. These are the two windiest times of year, the former associated with the southwest monsoon and the latter characterized by a persistent sea breeze. The salinity vs. SPM plot shows that high SPM is a seaward deposit and skewed landward. Suspended matter comprised of floccules, fecal pellets, and aggregates that consist of clay and biogenic particles occur everywhere in the estuary. Diatoms are the most common and are of marine type at the sea-end and freshwater-dominated at river-end stations of the estuary. SPM is characterized by kaolinite- and smectite-rich clay mineral suites at the river- and sea-end stations, respectively. Smectite concentrations increase seawards with the increase in SPM content and are not influenced by salinity. Wind-driven waves and currents and biogeochemical processes at the mouth of estuary likely play an important role in the formation of ETM in resuspension and transformation of SPM into floccules and aggregates and in their upkeep or removal.  相似文献   
2.
The activity concentration and the gamma-absorbed dose rates of the terrestrial naturally occurring radionuclides (232Th, 226Ra and 40K) were determined in soil samples collected from ten different locations of Sirsa district of Haryana, using HPGe detector based on high-resolution gamma spectrometry system. The range of activity concentrations of 226Ra, 232Th and 40K in the soil samples from the studied areas varies from 19.18 Bq kg−1 (Moriwala) to 40.31 Bq kg−1 (Rori), 59.43 Bq kg−1 (Pipli) to 89.54 Bq kg−1 (Fatehpur) and 223.22 Bq kg−1 (Moriwala) to 313.32 Bq kg−1 (SamatKhera) with overall mean values of 27.94, 72.75 and 286.73 Bq kg−1 respectively. The absorbed dose rate calculated from activity concentration of 226Ra, 232Th and 40K ranges between 8.84 and 18.58, 37.02 and 55.78, and 9.24 and 12.97 nGy h−1, respectively. The total absorbed dose in the study area ranges from 60.40 to 82.15 nGy h−1 with an average value of 70.12 nGy h−1. The calculated values of external hazard index (H ex) for the soil samples of the study area range from 0.36 to 0.49 with an average value of 0.42.  相似文献   
3.
Systematic studies on the suspended particulate matter (SPM) measured on a seasonal cycle in the Mandovi Estuary, Goa indicate that the average concentrations of SPM at the regular station are ∼20mg/l, 5mg/l, 19mg/l and 5mg/l for June–September, October–January, February–April and May, respectively. SPM exhibits low-to-moderate correlation with rainfall indicating that SPM is also influenced by other processes. Transect stations reveal that the SPM at sea-end stations of the estuary are at least two orders of magnitude greater than those at the river-end during the monsoon. Estuarine turbidity maximum (ETM) of nearly similar magnitude occurs at the same location in two periods, interrupted by a period with very low SPM concentrations. The ETM occurring in June–September is associated with low salinities; its formation is attributed to the interactions between strong southwesterly winds (5.1–5.6ms−1) and wind-induced waves and tidal currents and, dominant easterly river flow at the mouth of the estuary. The ETM occurring in February–April is associated with high salinity and is conspicuous. The strong NW and SW winds (3.2–3.7ms−1) and wind-driven waves and currents seem to have acted effectively at the mouth of the estuary in developing turbidity maximum. The impact of sea breeze appears nearly same as that of trade winds and cannot be underestimated in sediment resuspension and deposition  相似文献   
4.
In the present study, analysis of 238U concentration in 40 drinking water samples collected from different locations of Jodhpur, Nagaur, Bikaner and Jhunjhunu districts of Rajasthan, India has been carried out by using high resolution inductively coupled plasma mass spectroscopy (HR-ICP-MS) technique. The water samples were taken from hand pumps and tube wells having depths ranging from 50 to 800 feet. The measured uranium concentration lies in the range from 0.89 to 166.89 μg l-1 with the mean value of 31.72 μg l-1. The measured uranium content in twelve water samples was found to be higher than the safe limit of 30 μg l-1 as recommended by World Health Organization (WHO, 2011) and US Environmental Protection Agency (USEPA, 2011). Radiological risk calculated in the form of annual effective dose estimated from annual uranium intake ranges from 0.66 to 138.63 μSv y-1 with the mean value of 26.28 μSv y-1. The annual effective dose in two drinking water samples was found to be greater than WHO (2004) recommended level of 100 μSv y-1. Chemical risk calculated in the form of lifetime average daily dose (LAAD) estimated from the water samples varies from 0.02 to 4.57 μg kg-1 d-1 with the mean value of 0.87 μg kg-1 d-1. The lifetime average daily dose (LAAD) of ten drinking water samples was found to be greater than WHO (2011) recommended level of 1 μg kg-1 d-1. The corresponding values of hazard quotient of 48% water samples were found to be greater than unity.A good positive correlation of uranium concentration with total dissolved solids (TDS) and conductance has been observed. However no correlation of uranium concentration with pH was observed. The results revels that uranium concentration in drinking water samples of the study area can cause radiological and chemical threat to the inhabitants.  相似文献   
5.
In Shear strength reduction (SSR) technique, the factor of safety (FOS) is defined as the ratio of the material’s actual shear strength to the minimum shear strength required to prevent failure. Failure surface is found automatically through the zones within the material, where applied shear stresses cross the shear strength of the material. In this paper, a review of the technique is discussed in reference to FLAC. A brief background of the approach together with detailed procedure is presented.An attempt is made to exhibit the shear strength dependency of the strain. As stability of the slope is a function of the shear strength, the development of failure strain reflects the potential failure zone of slope. The shear strain developed in the slope increases with reduction in the shear strength and is reflected in the analysis. The concept of failure ratio (Rf) is incorporated in shear strength reduction technique and is demonstrated. Relationships between the critical shear strength reduction ratio and the safety factor are examined.  相似文献   
6.
Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg?1 h?1 with a mean value 59.7 mBq kg?1 h?1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg?1 with a mean value 41.6 Bq kg?1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg?1 h?1 (granite) with a mean value of 59.94 mBq kg?1 h?1.  相似文献   
7.
The contribution of atmospheric pressure and local wind to sea level variability at Goa (West coast of India) for the period 2007–2008 is investigated. Sea level data from a tide gauge are compared with measured local surface meteorological as well as oceanographic data. Multilinear regression analysis is used to resolve the dependence of sea level on various forcing parameters. The multilinear regression analysis performed over approx. 2-year data shows that the local surface meteorological data and water temperature account for the sea level variability only up to 6%. The accounted sea level variability increases to 25%, when the local wind and the surface currents obtained from satellite altimetry in the near vicinity of the study area are incorporated in the regression analysis. The contribution of local wind increases substantially when the regression is performed over a 2-month duration, and it is variable within the year. During the summer monsoon season (May–September), the sea level variability attributable to wind is up to 47% and 75%, respectively, for 2007 and 2008; however, it reduces to <20% during the winter monsoon (November–February) season. A significant part of the variability observed in sea level remains unaccounted for and is attributed to remote forcing.  相似文献   
8.
The East Kolkata Wetlands is a unique resource recovery system. The Ramsar Convention recognized it as a ‘Wetland of International Importance’ in August 2002. However, the long-term resource exploitation and land use changes in the dynamic ecosystem have resulted in non-linear environmental responses. This is an attempt using open source remote sensing datasets to capture the spatio-temporal transformation of the wetland resulting from various anthropogenic activities. Landsat MSS and TM imageries of 1973, 1980, 1989, 2001 and 2010 were classified using Maximum Likelihood Classifier to monitor the wetland change; however, to study wetland dynamics, the post-classification wetland change detection maps have been generated for two temporal phases, i.e. 1973–1989 and 1989–2010. This study finds that the area under wetlands has reduced comprehensively in the past 40 years due to the conversion of wetlands into various other uses such as urban expansion of the Kolkata metropolitan city.  相似文献   
9.
A study of natural radionuclides and radon concentration of Hamirpur District of Himachal Pradesh, India is carried out using various methodologies. The activity concentration of the natural radionuclides viz. 226Ra, 232Th and 40K is measured using high-resolution-based HPGe detector. Indoor radon measurements in the dwellings of Hamirpur district is carried out using LR-115 type II cellulose nitrate films in the bare mode. The average activity concentrations of 226Ra, 232Th and 40K are 35.58, 54.95 and 580.58 Bq kg?1, respectively. The annual average indoor radon value in the study area varies from 173.90 to 198.25 Bq m?3, which is well within the recommended action level given by International Commission on Radiological Protection. The indoor radon values obtained in the present investigation are higher than the world average of 40 Bq m?3. Radon concentration in water samples is measured using RAD7, an active radon detector. The annual effective dose for stomach and lung is determined from the measured value of radon concentration in water. To assess the radiation hazard of the natural radioactivity in all samples to the people, the radium equivalent activity, external hazard index, lifetime fatality risk, absorbed dose rate and total annual effective dose is estimated. The results signify that the studied area does not possess any radiation hazards due to the presence of natural radioactivity concentration.  相似文献   
10.
South India is one of the regions in the world that has the highest background radiation levels. In this region, river sediments are used in large quantities as building material. Therefore, the knowledge of the radionuclides distribution in such sediments is important for assessing their potential adverse effects on humans residing in buildings made of sediment material. For this goal, we focus on the determination of the natural radioactivity levels and magnetic properties in sediment samples collected from 33 locations along the southwestern Bharathapuzha river originating from the Anamalai hills. The sediment samples were subdivided into two categories according to particle size. It is observed that the average activity concentrations of 226Ra, 232Th, and 40K in sediment samples varied greatly with granulometric and geological differences. The average values of 226Ra, 232Th, and 40K and its associated radiological hazard parameters for category II samples (particle size between 149 μm and 2 mm) were lower than category I sediment samples (bulk samples). Moreover, the average radionuclide activity concentrations (except for 40K) and the calculated radiation hazard parameters are higher in the lowland region compared to the highland and the midland regions. The mass-specific magnetic susceptibility values ranged widely along the river, as well as between physiographic regions, e.g., average values for category I sediment samples were 950.2 × 10?8, 351.1 × 10?8 and 131.8 × 10?8 m3 kg?1 (for high-, mid- and lowland regions, respectively). Differences between physiographic regions and sediment fractions from both radioactivity determinations and magnetic parameters were analyzed with statistical tests and multivariate analysis, which showed the advantages of using both independent techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号