首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
  国内免费   2篇
大气科学   2篇
地球物理   5篇
地质学   4篇
海洋学   20篇
自然地理   1篇
  2021年   1篇
  2015年   2篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1986年   1篇
  1983年   1篇
  1974年   1篇
  1972年   1篇
  1963年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
The localized near-bottom water with silica content higher than that in the adjacent shelf water was observed to exist at the eastern margins of the East China Sea continental shelf. The core of the high silica water possessed the silica content corresponding to that in the Kuroshio at depths greater than on the shelf. The mixing analysis of water masses using temperature (T) and silica (Si) showed that the core water can be produced through the vertical mixing of intermediate water of the Kuroshio deeper than 100 m. This study provides us a conclusion that the intermediate water of the Kuroshio is strongly mixed on the shelf slope and then upwelled to form the ridge-like distribution of water masses with low temperature and high silica content at the shelf edge.  相似文献   
2.
An internal wavetrain, generated by a tidal current in superposition with the Tsushima Warm Current, has been observed by use of an acoustic echo-sounder upstream of the Shichiri-Ga-Sone Seamounts in the East Tsushima Strait of the Japan Sea. The sea surface above the internal wavetrain was simultaneously observed and was found to be undulated at the wavelength of the internal wave.  相似文献   
3.
The late Cenozoic orogeny in Japan is briefly reviewed. Amounts of volcanic materials in the three periods of the orogeny are estimated at: early Neogene 150 × 103 km3 (mafic 40 %, salic 60 %), middle and late Neogene 20 × 103 km3 (mafic 70 %, salic 30 %), Quaternary 5 × 103 km3 (mafic 80 %, salic 20 %). The largest volume per unit time is in the early Neogene, and the smallest in the middle and late Neogene. Volume per unit area becomes larger towards the southeastern margin or «front» of the volcanic belt. Thermal energy transported by volcanic materials is compared with the terrestrial heat flow in the belt.  相似文献   
4.
Using hydrographic data and moored current meter records and the ADCP observed current data during May–June 1996, a modified inverse method is applied to calculate the Kuroshio east of Taiwan and in the East China Sea and the currents east of Ryukyu Islands. There are three branches of the Kuroshio east of Taiwan. The Kuroshio in the East China Sea comes from the main (first) and second branches of the Kuroshio east of Taiwan. The easternmost (third) branch of the Kuroshio flows northeastward to the region east of Ryukyu Islands. The net northward volume transports of the Kuroshio through Section K2 southeast of Taiwan and Section PN in the East China Sea are 44.4×106 and 27.2×106 m3s−1, respectively. The western boundary current east of Ryukyu Islands comes from the easternmost branch of the Kuroshio east of Taiwan and an anticyclonic recirculating gyre more east, making volume transports of 10 to 15×106 m3s−1. At about 21°N, 127°E southeast of Taiwan, there is a cold eddy which causes branching of the Kuroshio there.  相似文献   
5.
Oceanic current data in the warm pool region of the western equatorial Pacific measured by upward-looking moored Acoustic Doppler Current Profilers at two equatorial sites (147°E and 154°E) and two off-equatorial sites (2°N and 2°S, 156°E) during TOGA/COARE Intensive Observing Period (IOP) from November 1992 to February 1993 are used to examine short-term variabilities in the upper layer above 160–240 m. In time series of the zonal and meridional currents in many layers, spectral peaks are found at periods around 2 days and 4 days in addition to high energies in a period range longer than 10 days. The signal with the period of about 2 days has significantly high energies at all sites, and its magnitude is higher for the meridional current than for the zonal one. This signal is especially active in the first half of IOP from November to December in 1992. In this period, the quasi-2-day signal in the current field is coherent between northern (2°N) and southern (2°S) stations, but it has no evident relationship with that in the surface wind field around the stations. The quasi-4-day signal with the period of about 4 days has highest energies in layers above 160 m at the southern station, and is coherent between northern and southern stations. Besides, the signal at the station of 2°S has a significantly high coherence with that in the wind at the southern station, suggesting that it is a local phenomenon.  相似文献   
6.
The sea surface height data from 1992 through 2012 in the Eastern Indian Ocean, the 6 sets of hydrographic data sparsely spanning 1990–2001 in water south of Java–Bali, and the 24 shipboard acoustic Doppler current profiler (ADCP) data across the Ombai Strait during 1997–2000 were used as a combined dataset to understand sea level and current variability along the southern coast of Java and Lesser Sunda Islands. The first two dominant empirical orthogonal function (EOF) modes capture combined seasonal with interannual and seasonal variability that account for 44.5 and 19.9 % of the total variances caused by El Niño Southern Oscillation and Indian Ocean Dipole events, and by the seasonal change of the Asian monsoon, respectively. The geostrophic current and ADCP data show that the eastward and westward currents are distinguishable via the vertical profiles of current velocity. The eastward-flowing South Java Current (SJC) is characterized by a large vertical shear and shallower diminishing depth of about 150 m and it is increased to 300 m in the presence of the Indian Ocean Kelvin Waves (IOKWs). In contrast, the westward current is dominated by the Indonesian Throughflow (ITF) with no vertical shear and has uniform current in the upper 300 m layer. The coastally trapped SJC and IOKWs are responsible for the eastward current. The SJC is not observed in the westward current because of non-existence of coastally trapped modes. The ITF and SJC generate persistent cyclonic (cold) and anticyclonic (warm) mesoscale eddies, respectively, in waters south of eastern Java.  相似文献   
7.
On the basis of hydrographic data and current measurement (the mooring system, vessel-mounted ADCP and toward ADCP) data obtained in June 1999, the circulations in the southern Huang-hai Sea (HS) and northern East China Sea (ECS) are computed by using the modified inverse method. The Kuroshio flows northeastward through eastern part of the investigated region and has the main core at Section PN, a northward flow at the easternmost part of Section PN, a weaker anti-cyclonic eddy between these two northward flows, and a weak cyclonic eddy at the western part of Section PN. The above current structure is one type of the current structures at Section PN in ECS. The net northward volume transport (VT) of the Kuroshio and the offshore branch of Taiwan Warm Current (TWCOB) through Section PN is about 26.2×106m3/s in June 1999. The VT of the inshore branch of Taiwan Warm Current (TWCIB) through the investigated region is about 0.4×106m3/s. The Taiwan Warm Current (TWC) has much effect on the currents over the  相似文献   
8.
A Continuous Mapping of Tidal Current Structures in the Kanmon Strait   总被引:1,自引:0,他引:1  
Tidal current structures at the Hayatomono-Seto of the Kanmon Strait are mapped continuously during March 17 to 20, 2003, including a spring tide, by the eight coastal acoustic tomography (CAT) systems distributed on both the sides of the strait. Detailed structures of strong tidal currents and their associated vortices are well reconstructed by the inverse analysis of travel-time difference data obtained from the reciprocal sound transmission between the paired CAT systems located at both sides of the strait mainly. The results are well compared to the shipboard acoustic Doppler current profiler (ADCP) data at the correlation rate of 0.84/0.82 and the RMS difference of 0.47/0.48 ms−1 for the east-west/north-south current after the selection of good data. During the observation period, the maximum hourly mean volume transport for the upper 7 m layer across the strait reached 13,314 m3 s−1 for the eastward and 5,547 m3 s−1 for the westward. The daily mean transport is directed to the eastward and estimated 1,470 m3 s−1 and 2,140 m3 s−1 for March 18 and 19, respectively, when a spring tide occurs.  相似文献   
9.
Annual variation of the southern boundary current in the Banda Sea   总被引:1,自引:0,他引:1  
ADCP measurements in the southern Banda Sea, obtained with the bulk carrier “MS First Jupiter” from 1997 until 2000, have been analysed. The observations reveal the presence of an eastward flowing southern boundary current, bringing water from the Indonesian throughflow towards the connections with the Indian Ocean in Ombai Strait and the Timor Sea. The mean transport in the upper 300 m is estimated to be about 5 Sv, over 50% of the outflow towards the Indian Ocean in this layer through the eastern passages near Timor. The velocity in the boundary current shows a clear annual variation, more or less in phase with the annually varying inflow through Makassar Strait and the outflow near Timor. The phase of the annual variation cannot be explained by the monsoonal variation of the local winds. Therefore this annual variation of the throughflow is probably generated by large-scale forcing. A considerable reduction of the strength of the boundary current was observed in 1998, following the 1997–1998 El Niño with a delay of about half a year. On shorter time scales, Kelvin waves, entering the Banda Sea from the Indian Ocean, cause flow reversals of the boundary current.  相似文献   
10.
Four new radiocarbon dates of elevated strandlines in tectonically active areas of eastern Indonesia and East Malaysia indicate average rates of uplift that range between 4.5 and 9 mm annually during the past 24,000 yr. These values are at least three times higher than former estimates from eastern Indonesia. Another radiocarbon date from the south arm of Sulawesi—also tectonically mobile—indicates a rate of uplift of 1.4–2.5 mm per year which corresponds with earlier determinations. This particular case, however, suggests that the sample was probably located close to a north-south axis about which southern Sulawesi was tilted during the Quaternary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号