首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
测绘学   1篇
大气科学   1篇
地球物理   1篇
  2021年   1篇
  2018年   1篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The results of an intercomparison experiment performed with five numerical ocean models of different architecture are presented. While all models are able to simulate the large-scale characteristics of the North Atlantic circulation with a fair degree of realism, they also exhibit differences that can be attributed to the choices made in vertical coordinates, domain size, and boundary conditions.  相似文献   
2.
Ocean Dynamics - Various uncertainties exist in a hindcast due to the inabilities of numerical models to resolve all the complicated atmosphere-sea interactions, and the lack of certain ground...  相似文献   
3.
Chlorophyll a (Chl-a) has been the most commonly used biomass metric in biological oceanographic processes. Although limited to two-dimensional surfaces, remote-sensing tools have been successfully providing the most recent state of marine phytoplankton biomass to better understand bottom-up processes initiating daily marine material cycles. In this exercise, ocean color products with various time-scales, derived from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), were used to investigate how their bio-optical properties affect the upper-ocean thermal structure in a global ocean modeling framework. This study used a ¼-degree Hybrid Coordinate Ocean Model forced by hourly atmospheric fluxes from the Climate Forecast System Reanalysis at National Oceanic Atmospheric Administration. Three numerical experiments were prepared by combining two ocean color products – downwelling diffuse attenuation coefficients (KdPAR) and chlorophyll a (Chl-a) – and two shortwave radiant flux algorithms. These three runs are: (1) KparCLM, based on a 13-year long-term climatological KdPAR derived from SeaWiFS; (2) ChlaCLM, based on a 13-year long-term Chl-a derived from SeaWiFS; and (3) ChlaID, which uses the inter-annual time-series of monthly-mean SeaWiFS Chl-a product. The KparCLM experiment uses a Jerlov-like two-band scheme; whereas, both ChlaCLM and ChlaID use a two-band scheme that considers inherent (absorption (a) and backscattering (bb) coefficients) and apparent optical properties (downwelling attenuation coefficient (Kd) and solar zenith angle (θ, varying 0–60°)). It is found that algorithmic differences in optical parameterizations have a bigger impact on the simulated temperatures in the upper-100 m of the eastern equatorial Pacific, NINO3.4 region, than other parts of the ocean. Overall, the KdPAR-based approach estimated relatively low surface temperatures compared to those estimated from the chlorophyll-based method. In specific, this cold bias, pronounced in the upper 20–30 m, is speculated to be due to optical characteristics of the algorithm and KdPAR products, or due to nonlinear hydrodynamical processes involving displacement of mixed-layer depth. Comparisons between each experiment against Global Ocean Data Assimilation System (GODAS; Behringer and Xue 2004) analyses find that KparCLM-based simulations have lower mean differences and variabilities with higher cross-correlation coefficients compared to ChlaCLM- and ChlaID-based experiments.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号