首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  国内免费   2篇
地球物理   24篇
地质学   2篇
综合类   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
排序方式: 共有27条查询结果,搜索用时 593 毫秒
1.
2.
3.
This note presents a novel method for determining the changing composition of a multi-component NAPL body dissolving into moving groundwater, and the consequent changes in the aqueous phase solute concentrations in the surrounding pore water. A canonical system of coupled non-linear governing equations is derived which is suitable for representation of both pooled and residual configurations, and this is solved. Whereas previous authors have handled such problems numerically, it is shown that these governing equations succumb to analytical solution. By a suitable substitution, the equations become decoupled, and the problem collapses to a single first-order equation. The final result is expressed implicitly, with time as a function of the number of moles of the least soluble component, m1. The number of moles of each other component is expressed explicitly in terms of m1. It is shown that the time-m1 relationship has a well behaved inverse. An example is given in which the analytic solution is verified against traditional finite difference analysis, and its computational efficiency is shown.  相似文献   
4.
The equations for a compositional model for simulation of a two-phase, three-component system with inter-phase mass transfer are developed. Emphasis is placed on development of inter-phase mass transfer equations for incorporation of rate-limited inter-phase mass transfer. Due to the nature of the three-component systems considered, a single-film model may be inadequate and a two-film model must be utilized. A two-film model accounts for the simultaneous transfer of components in both directions across phase interfaces. The effect of interaction between components on diffusion is considered using a general form of Fick's Law. A Hand Plot representation of ternary phase behavior is chosen since it allows for straightforward calculation of miscibility of bulk phases under conditions of local non-equilibrium. The developed set of equations form the basis for a numerical model to simulate the enhanced removal of non-aqueous phase liquids (NAPLs) from porous media using single-component alcohol floods.  相似文献   
5.
Numerical modeling was employed to study the performance of thermal conductive heating (TCH) in fractured shale under a variety of hydrogeological conditions. Model results show that groundwater flow in fractures does not significantly affect the minimum treatment zone temperature, except near the beginning of heating or when groundwater influx is high. However, fracture and rock matrix properties can significantly influence the time necessary to remove all liquid water (i.e., reach superheated steam conditions) in the treatment area. Low matrix permeability, high matrix porosity, and wide fracture spacing can contribute to boiling point elevation in the rock matrix. Consequently, knowledge of these properties is important for the estimation of treatment times. Because of the variability in boiling point throughout a fractured rock treatment zone and the absence of a well-defined constant temperature boiling plateau in the rock matrix, it may be difficult to monitor the progress of thermal treatment using temperature measurements alone.  相似文献   
6.
7.
A two-dimensional semi-analytical heat transfer solution is developed and a parameter sensitivity analysis performed to determine the relative importance of rock material properties (density, thermal conductivity and heat capacity) and hydrogeological properties (hydraulic gradient, fracture aperture, fracture spacing) on the ability to heat fractured rock using thermal conductive heating (TCH). The solution is developed using a Green’s function approach in which an integral equation is constructed for the temperature in the fracture. Subsurface temperature distributions are far more sensitive to hydrogeological properties than material properties. The bulk ground water influx (q) can provide a good estimate of the extent of influx cooling when influx is low to moderate, allowing the prediction of temperatures during heating without specific knowledge of the aperture and spacing of fractures. Target temperatures may not be reached or may be significantly delayed when the groundwater influx is large.  相似文献   
8.
The influence of source zone concentration reduction on solute plume detachment and recession times in fractured rock was investigated using new semianalytical solutions to transient solute transport in the presence of advection, dispersion, sorption, matrix diffusion, and first-order decay. Novel aspects of these solutions are: (1) the source zone concentration behavior is simulated using a constant concentration with the option for either an instantaneous reduction to zero concentration or an exponentially decaying source zone concentration initiated at some time (t*) after the source is introduced, and (2) different biodegradation rates in the fracture and rock matrix. These solutions were applied for sandstone bedrock and revealed that biodegradation in the matrix, not the fracture, may be the most significant attenuation mechanism and therefore may dictate remediation time scales. Also, instantaneous and complete source concentration reduction in aged plumes may not be beneficial with respect to plume response because back-diffusion can sustain plume migration for long periods of time. Moderate source zone concentration reduction has a similar impact on the rate of advance of the leading edge of the plume as aggressive concentration reduction. If the source zone concentration reduction half-life is less than the plume decay half-life, then volatile organic compound (VOC) mass sequestered in the rock matrix will ultimately dictate plume persistence and not the presence of the source zone.  相似文献   
9.
10.
On the use and error of approximation in the Domenico (1987) solution   总被引:2,自引:0,他引:2  
West MR  Kueper BH  Ungs MJ 《Ground water》2007,45(2):126-135
A mathematical solution for solute transport in a three-dimensional porous medium with a patch source under steady-state, uniform ground water flow conditions was developed by Domenico (1987). The solution derivation strategy used an approximate approach to solve the boundary value problem, resulting in a nonexact solution. Variations of the Domenico (1987) solution are incorporated into the software programs BIOSCREEN and BIOCHLOR, which are frequently used to evaluate subsurface contaminant transport problems. This article mathematically elucidates the error in the approximation and presents simulations that compare different versions of the Domenico (1987) solution to an exact analytical solution to demonstrate the potential error inherent in the approximate expressions. Results suggest that the accuracy of the approximate solutions is highly variable and dependent on the selection of input parameters. For solute transport in a medium-grained sand aquifer, the Domenico (1987) solution underpredicts solute concentrations along the centerline of the plume by as much as 80% depending on the case of interest. Increasing the dispersivity, time, or dimensionality of the system leads to increased error. Because more accurate exact analytical solutions exist, we suggest that the Domenico (1987) solution, and its predecessor and successor approximate solutions, need not be employed as the basis for screening tools at contaminated sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号