首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   2篇
地球物理   2篇
地质学   2篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 10 毫秒
1
1.
Oxygenation of the ocean is presumed to be an important factor stimulating the evolution of multicellular animals. The appearance of the Ediacaran‐type biota (ca 575 Ma) was assigned to the aftermath of the Gaskiers glaciation (ca 580 Ma), when substantial oceanic oxygenation is believed to have started. However, several lines of evidence reveal that at least sponges evolved before this oxygenation. For understanding the first stage of animal evolution, we propose the hypothesis that Dissolved Organic Carbon (DOC) Stimulated the evolution for Animal Multicellularity (DOXAM). Recent geochemical studies of the Ediacaran sedimentary sequences have indicated that a substantial DOC mass was developed in the stratified ocean after the Marinoan glaciation (655–635 Ma), and this was supported by the inorganic and organic carbon isotope profiles of the Doushantuo Formation in South China. The DOC mass was an oxygen consumer in the water column; however, it could have provided a food source for filter‐feeding animals such as sponges and cnidarians, and established a primitive food‐web. Such an ecological structure is recognized in modern deep‐sea coral mounds. Results from the integrated ocean drilling program (IODP) Expedition 307 for a mound in northeastern Atlantic suggested that organic carbon suspended around the density boundary in the water column is the key feature to feed the heterotrophic deep‐sea coral community. Our hypothesis is consistent with the fact that the two most primitive animal phyla (Porifera and Cnidaria) are filter feeders. The evolution of filter feeding ecosystems removed the DOC mass and may have contributed to ocean oxygenation in the terminal Neoproterozoic when animal evolution passed into the second stage, with the appearance of bilaterians.  相似文献   
2.
The Pho Han Formation is exposed on southern Cat Ba Island, Hai Phong Province in northeastern Vietnam, and intercalates the Devonian and Carbonif-erous (D-C) boundary (Ta and Doan, 2007; Komatsu et al., 2012). The D-C boundary section consists mainly of limestone beds, numbered from 1 to 167, interca-lated with alternating black organic-rich shales. The limestone yields abundant brachiopods, crinoid-stems and conodonts. Preliminary investigations on strati-graphy (conodont biostratigraphy and δ13C) and sedi-mentology of beds 113-133 were undertaken in this study.  相似文献   
3.
Akara gold mine in north-central Thailand is situated within the Loei-Phetchabun-Nakhon Nayok volcanic belt. The roughly north-south trending, Permo-Triassic volcanic rocks earlier mapped by Thailand Department of Mineral Resources were re-mapped and samples were collected from the main active open pit. Forty-four samples were petrographi-cally classified and geochemically analyzed to docu-ment their stratigraphy. Two types of volcanic rocks are recognized, namely coherent and non-coherent units, in which the former is older on the basis of stratigraphic succession. Several lines of evidence suggest that the studied rocks occurred nearby the volcanic edifices and were dominated by debris flows of submarine environment.  相似文献   
4.
Banded iron formations are the most characteristic of Archean–Paleoproterozoic sediment records. Laminated textures resembling banded iron formations can be observed in modern hot‐spring environments. Using sedimentological and microbiological techniques, we investigated the processes of laminar formation and considered the origin of lamination textures. An iron‐rich deposit at the Okuoku‐hachikurou hot spring in Japan exhibits sub‐millimeter laminations consisting of bacteria‐induced ferrihydrite and aragonite. The ferrihydrite particles are spherical and exhibit fine lamination, up to 100 µm thick in ferrihydrite‐rich parts. In aragonite‐rich parts, ferrihydrite particles form filamentous textures with diameters of 10–30 µm, but not laminations. Textural analysis using scanning electron microscopy and phylotype analysis using 16S rRNA indicated the bacterial contribution to ferrihydrite precipitation. A sheath‐like fabric showing a meshwork of nanometer‐order organic filaments, and sheath‐forming bacteria were observed in the deposit specimen etched by citric acid. Phylotype analysis detected in the iron‐rich deposits some bacterial types related to cyanobacteria, purple bacteria, and iron‐oxidizing bacteria. Iron‐oxidizing bacteria probably were responsible for precipitation of the ferrihydrite. Chemolithoautotrophic iron‐oxidizing bacteria are microaerophilic and thrive on Fe(II) in a redox gradient, but dissolved oxygen was not detected in the Okuoku‐hachikurou hot spring. Thus, a certain supply of oxygen is needed for metabolism of the microaerophilic iron‐oxidizing bacteria. The distribution of photosynthetic pigments in the iron‐rich parts indicates that the most likely source of oxygen is photosynthesis by cyanobacteria. This symbiotic relationship between cyanobacteria and iron‐oxidizing bacteria can explain the laminated texture of iron‐rich deposits in the Okuoku‐hachikurou hot spring. These laminations may reflect changes in photosynthetic intensity. There is presently some debate about the bacterial groups that may have played roles in precipitation of banded iron formations. This study presents a new bacterial model for iron precipitation and may provide a mechanism for sub‐millimeter laminations in banded iron formations deposited in shallow water.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号