首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   5篇
地球物理   27篇
地质学   19篇
海洋学   2篇
天文学   14篇
自然地理   1篇
  2021年   1篇
  2020年   2篇
  2018年   3篇
  2017年   3篇
  2016年   7篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   6篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1987年   1篇
  1981年   1篇
  1973年   1篇
  1968年   1篇
  1963年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
1.
We propose a zero-point photometric calibration of the data from the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) on board the Hubble Space Telescope , based on a spectrum of Vega and the most up-to-date in-flight transmission curves of the camera. This calibration is accurate at the level of a few hundredths of a magnitude. The main purpose of this effort is to transform the entire set of evolutionary models into a simple observational photometric system for ACS/WFC data, and to make them available to the astronomical community. We provide the zero-points for the most used ACS/WFC bands, and give basic recipes for calibrating both the observed data and the models. We also present the colour–magnitude diagram from ACS data of five Galactic globular clusters, spanning the metallicity range  −2.2 <[Fe/H] < −0.04  , and we provide fiducial points representing their sequences from several magnitudes below the turn-off to the red giant branch tip. The observed sequences are compared with the models in the newly defined photometric system.  相似文献   
2.
3.
4.
We present very low-mass stellar models as computed using non-grey model atmospheres for selected assumptions about the stellar metallicities. The role of atmospheres is discussed and the models are compared with models based on the Eddington approximation, and with similar models that have appeared in the recent literature. Theoretical predictions concerning both the HR diagram location and the mass–luminosity relation are presented and discussed in terms of expectations in selected photometric bands. Comparison with available observational data concerning both galactic globular clusters and dwarfs in the solar neighbourhood reveals a satisfactory agreement together with the existence of some residual mismatches.  相似文献   
5.
Since the birth of X-ray astronomy, spectral, spatial and timing observation improved dramatically, procuring a wealth of information on the majority of the classes of the celestial sources. Polarimetry, instead, remained basically unprobed. X-ray polarimetry promises to provide additional information procuring two new observable quantities, the degree and the angle of polarization. Polarization from celestial X-ray sources may derive from emission mechanisms themselves such as cyclotron, synchrotron and non-thermal bremsstrahlung, from scattering in aspheric accreting plasmas, such as disks, blobs and columns and from the presence of extreme magnetic field by means of vacuum polarization and birefringence. Matter in strong gravity fields and Quantum Gravity effects can be studied by X-ray polarimetry, too. POLARIX is a mission dedicated to X-ray polarimetry. It exploits the polarimetric response of a Gas Pixel Detector, combined with position sensitivity, that, at the focus of a telescope, results in a huge increase of sensitivity. The heart of the detector is an Application-Specific Integrated Circuit (ASIC) chip with 105,600 pixels each one containing a full complete electronic chain to image the track produced by the photoelectron. Three Gas Pixel Detectors are coupled with three X-ray optics which are the heritage of JET-X mission. A filter wheel hosting calibration sources unpolarized and polarized is dedicated to each detector for periodic on-ground and in-flight calibration. POLARIX will measure time resolved X-ray polarization with an angular resolution of about 20 arcsec in a field of view of 15 × 15 arcmin and with an energy resolution of 20% at 6 keV. The Minimum Detectable Polarization is 12% for a source having a flux of 1 mCrab and 105 s of observing time. The satellite will be placed in an equatorial orbit of 505 km of altitude by a Vega launcher. The telemetry down-link station will be Malindi. The pointing of POLARIX satellite will be gyroless and it will perform a double pointing during the earth occultation of one source, so maximizing the scientific return. POLARIX data are for 75% open to the community while 25% + SVP (Science Verification Phase, 1 month of operation) is dedicated to a core program activity open to the contribution of associated scientists. The planned duration of the mission is one year plus three months of commissioning and SVP, suitable to perform most of the basic science within the reach of this instrument. A nice to have idea is to use the same existing mandrels to build two additional telescopes of iridium with carbon coating plus two more detectors. The effective area in this case would be almost doubled.  相似文献   
6.
7.
8.
This paper deals with the derivation of the hydrological response of a hillslope on the assumption of quick runoff by surface runoff generation. By using the simple non‐linear storage based model, first proposed by Horton, an analytical solution of the overland flow equations over a plane hillslope was derived. This solution establishes a generalization for different flow regimes of Horton's original solution, which is valid for the transitional flow regime only. The solution proposed was compared successfully with that of Horton and, for the turbulent flow regime, to the one derived from kinematic wave theory. This solution can be applied easily to both stationary and non‐stationary rainfall excess events. An analytical solution for the instantaneous response function (IRF) was also derived. Finally, simple expressions to compute peak and time to peak of IRF are proposed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
9.
There can exist a hidden sector of the Universe in the form of parallel “mirror” world which has the same particle physics as the observable world and interacts with the latter only gravitationally. Big Bang nucleosynthesis bounds demand that the mirror sector should have a smaller temperature than the ordinary one. This implies that the mirror matter could play a role of dark matter, and in addition its chemical content should be dominated by helium. Here we study the evolutionary and structural properties of the mirror stars which essentially are similar to that of the ordinary stars but with higher helium contents. Being invisible in terms of photons, they could be observed only as MACHOs in the microlensing experiments. Using a numerical code, we compute evolution of stars with large helium abundances (Y = 0.30–0.80) and a wide range of masses, from 0.5 to 10 M. We found that helium dominated mirror star should have much faster evolutionary time (up to a factor 30) than the ordinary star with the same mass. In addition, we show the diagrams of luminosities, effective temperatures, central temperatures and densities, and compute the masses of the He-core at ignition and the minimum mass for carbon ignition, for different chemical compositions. The general conclusion is that mirror stars evolve faster as compared to ordinary ones, and explode earlier as type II supernovae, thus enriching the galactic halo of processed mirror gas with higher metallicity, with implications for MACHO observations and galaxy evolution.  相似文献   
10.
New data on ophiolite-bearing terranes of the Liguride Complex, together with some information on the terranes of the Sicilide Complex, result in a better understanding of the role and tectonic significance of these units in the construction of the Southern Apennines orogenic belt. The Liguride Complex is composed of two main tectonic units overlain by a thick turbiditic sequence of Late Oligocene-Middle Miocene age. The uppermost one (Frido Unit) is a polydeformed and polymetamorphosed sequence, composed of two tectonic subunits of shales and calc-schists, respectively, containing blocks of ophiolite, garnet gneiss, amphibolites and granitoids. This unit is thrust over the un-metamorphosed terranes (Calabro–Lucano Flysch Unit) consisting of a broken formation with blocks of Late Jurassic ophiolite and their sedimentary cover, Cretaceous-Eocene pelagic sediments and Late Oligocene volcaniclastic deposits. The Frido Unit underwent HP/LT metamorphism (P= 8–10 Kb; T= 400–500 °C) resulting in glaucophane and lawsonite assemblages in the ophiolitic rocks and aragonite in the meta-limestones and calc-schists, followed by greenschist fades metamorphism (P= 4 Kb; T= 300–350 °C). From a structural point of view units of the Liguride Complex comprise structures developed at different structural levels, indicating progressive non-coaxial deformation in response to tectonic transport towards the N-NE. The ophiolite-bearing terranes of the Liguride Complex can be considered as a remnant of an accretionary complex in which the Calabro Lucano Flysch Unit represents the toe of the wedge where frontal accretion processes occur and the Frido Unit is a deeper portion. Emplacement of the Frido Unit is explained as being due to formation of a deep duplex structure during the early stage of continental collision processes. The polarity of tectonic transport provides new evidence that the Liguride Complex represents a suture zone between the Apulian and the Calabrian blocks. The age of collision appears to be not older than late Oligocene. The allochtonous terranes of the Liguride and Sicilide Complexes, therefore, represent a complete accretionary wedge which records, first, subduction of the Neotethys ocean beneath the Calabrian (Europe) continental margin and, later, continental collision with the African block.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号