首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
大气科学   2篇
地球物理   1篇
地质学   3篇
天文学   1篇
自然地理   3篇
  2005年   1篇
  2000年   1篇
  1990年   3篇
  1984年   1篇
  1979年   1篇
  1978年   2篇
  1974年   1篇
排序方式: 共有10条查询结果,搜索用时 359 毫秒
1
1.
Full chemical analyses, including some trace elements and both oxygen and strontium isotope abundance data are presented for samples collected from a traverse across the outcrop of the early Tertiary Loch Uisg Granophyre. Chemically, the body is rhyodacite with very uniform major and trace element composition. In contrast, depleted δ18O values vary widely from +1.5‰ in the south to ?3.7‰ in the north (a distance of about 21/2 km), a range comparable to that for the intrusive rocks of Mull as a whole. This indicates more extensive groundwater interaction (i.e. higher water/rock ratios and/or higher temperatures of isotope exchange) towards the focus of the central intrusive complex. There is some degree of correlation between δ18O and iron oxidation ratios but no other evidence that the primary igneous geochemistry of these rocks has been significantly modified by hydrothermal alteration after emplacement of the pluton. Initial87Sr/86Sr ratios range from 0.71350 ± 9 to 0.71624 ± 6 and correlate with both Rb content and Rb/Sr ratio, the latter correlation yielding a pseudo-isochron of 260 ± 54 Ma at the time of emplacement. These results confirm a major contribution from an old crustal source region, ruling out formation of the granophyre solely from a basic parent magma. However, Rb-Sr data are presented for the Moine schists exposed in Mull and Morvern which also appear to rule out their involvement in the petrogenesis of the granophyre, either as a source region for melting, or as a bulk contaminant for a mantle-derived magma. The only viable hypotheses are assimilation at depth of? Lewisian into a basaltic fractionation sequence or partial melting of a Proterozoic basement such as that involved in the production of Caledonian granites in the Scottish Highlands.  相似文献   
2.
3.
4.
5.
Major and trace element analyses and strontium isotope ratios are presented for twenty-four samples of lavas and plugs from the early Tertiary lava pile in Mull. The samples were selected on the basis of petrographic freshness from a large collection from outside the hydrothermally altered zone of pneumatolysis which occupies the central region of the volcanic complex. Most of the analyses yield normative hypersthene and we argue that these are essentially unaltered magmatic compositions. The analytical data indicate that the samples may be divided into three groups on the basis of major element chemistry, initial 87Sr/86Sr ratios and correlations between lithophile element contents. Group I comprises an alkaline series (basalt-hawaiite-mugearite) with extremely low initial 87Sr/86Sr ratios (0.7030) and generally low lithophile element contents. Apart from their alkalinity and high Sr and Zr contents these samples have affinities with abyssal tholeiites. Group II contains hypersthene normative basalts with more tholeiitic characteristics but (as in the case of the Skye Main Lava Series) the more evolved rocks are trachytes. This group is characterized by more normal levels of lithophile element concentrations and relatively high initial 87Sr/86Sr ratios of about 0.7055. Group III is less clearly defined and contains basalts that are generally sparsely olivine-phyric and in most chemical respects fall between Group I and Group II-including initial 87Sr/86Sr ratios (0.7033 to 0.7043). They may represent mixtures of Group I and Group II type sources or magmas. Groups I and II appear to be similar, respectively, to the relatively sodic iron-rich and the relatively potassic ironpoor silica enrichment trends distinguished in the Skye Main Lava Series. In the Group I magma series the behaviour of Y and Sr relative to other incompatible elements can only be explained by differential partial melting of a deep garnet-lherzolite mantle source. Fractional crystallization has undoubtedly occurred at some stage during the ascent of these magmas from the mantle, as indicated by the behaviour of Ni and Cr, but has not been a major factor in the production of evolved magma compositions. The Group II magmas appear to have originated from a source more enriched in lithophile elements, and a relatively shallow (< 50 km) plagioclase-lherzolite mantle source is suggested for these magmas because they have Sr/Ba ratios between one and two orders of magnitude lower than those characteristic of Group I. Rb-Sr systematics suggest that the vertical heterogeneity of the mantle which was largely responsible for the chemical differences between these three groups may have existed for a very long time prior to Tertiary magmatism.  相似文献   
6.
Using eigenmode expansion of the Mark III and SFI surveys of cosmological radial velocities, a goodness-of-fit analysis is applied on a mode-by-mode basis. This differential analysis complements the Bayesian maximum likelihood analysis that finds the most probable model given the data. Analyzing the surveys with their corresponding most likely models from the CMB-like family of models, as well as with the currently popular LambdaCDM model, reveals a systematic inconsistency of the data with these "best" models. There is a systematic trend of the cumulative chi(2) to increase with the mode number (where the modes are sorted by decreasing order of the eigenvalues). This corresponds to a decrease of the chi(2) with the variance associated with a mode and hence with its effective scale. It follows that the differential analysis finds that on small (large) scales the global analysis of all the modes "puts" less (more) power than actually required by the data. This observed trend might indicate one of the following: (1) the theoretical model (i.e., power spectrum) or the error model (or both) have an excess of power on large scales, (2) velocity bias, or (3) the velocity data suffers from systematic errors that have not yet been corrected.  相似文献   
7.
The ultimate aim of our overall task, of which the effort described in this paper is a part, is to be able to model the impulsive output of buried charges and the response of targets of interest. It is not practical or cost-effective to determine the response of all targets of interest to buried charges of all sizes by testing them. In order to have confidence in our models, however, they must be validated by a modest number of tests. A critical element in modelling the response of a target is the ability to model the loading function. The load a buried charge applies to a target above it when the charge detonates can be characterized in terms of the vertical impulse. The vertical impulse is a function of the size of the charge, its depth of burial, and the properties of the soil in which it is buried. The primary objective of the effort described in this paper is to determine the load a known charge places on a non-responding target so the data can be used to validate our models.

For model validation, a large number of detonator-scale experiments have been conducted by the University of Maryland (Fourney et al. [1]). It was also necessary to conduct a modest number of experiments at a larger scale, nine in total, to ensure that the results of the detonator-scale tests can be satisfactorily scaled up. Of the nine large-scale experiments conducted, seven were conducted with 5 or 10 lb cast TNT charges. All experiments were conducted in sand that was as nearly fully water-saturated as possible. The objective of the experiments was to determine the vertical impulse applied to a non-deforming target plate above the charge.

The large-scale experiments were conducted using the Vertical Impulse Measurement Fixture (VIMF) at the Army Research Laboratory, Aberdeen, MD. The VIMF is a unique facility that has been designed specifically to measure accurately the vertical impulse from buried charges weighing up to 8 kg.

This paper describes the VIMF and its instrumentation, test methods and test results. The results obtained demonstrate that in some cases, when the soil is saturated sand, explosive 'bubble' effects similar to those encountered in shallow water are encountered.  相似文献   
8.
The anorogenic igneous rocks of Mull consist essentially of a lava pile of predominantly basaltic composition, cut by an intrusive complex. The basement consists of Precambrian metamorphic rocks of the Moine Series underlain by Lewisian gneiss. The intrusive complex contains a significant proportion of granitic intrusions which can be ascribed to three successive centres of activity, Centres 1–3. We report new major and trace element, including rare earth element analyses, 87Sr/86Sr ratios and 18O values for a comprehensive collection of granitic rocks from the 3 centres. The 18O values range from +4 to –6 indicating variable extent of interaction between the rocks and heated meteoric groundwater. However, correlations of 18O with other major and trace element data and 87Sr/86Sr ratios are uniformly low, apart from Fe2O3. It is thus unlikely that the interaction of the rocks with meteoric water has systematically altered the chemical (including Sr isotope) characteristics. The chemical and Sr isotope data reflect magmatic values and can therefore be used to comment on the petrogenesis of the granitic rocks.These data indicate that there are important differences between granitic rocks of the centres with Centre 1 forming one distinct group and Centres 2 and 3 a different group. For a given SiO2 value, the Centre 1 granites have higher Na2O, MgO, P2O5, TiO2, Sr, and V and lower Al2O3, MnO, Zn, Zr, and Y than those of Centres 2 and 3. In addition, the Centre 1 granites have lower REE contents and higher CeN/YbN ratios than those of Centres 2 and 3. Granites from all three centres have Eu anomalies, those of Centre 3 being generally greater (Eu/Eu* = 0.66–0.10). Finally, there are important Sr isotope distinctions between the three Centres; calculated initial 87Sr/86Sr ratios for the Centre 1 granites (using 58.2Ma) range between 0.71366–0.71646 (average 0.71530) and have a general correlation of 87Sr/86Sr with 87Rb/86Sr. The initial 87Sr/86Sr ratios of the Centre 2 granites range from 0.70663 to 0.70868, but the 87Sr/86Sr data do not define an isochron. Finally, data for the Centre 3 granites define a Rb-Sr wholerock isochron with an age of 58.2±2.5 Ma and an initial 87Sr/86Sr ratio of 0.71003 ±36.Both the chemical trends and isotopic data for the Mull granites can be interpreted in terms of contrasted origins for the granitic rocks of the two groups. The relatively primitive chemical composition and high initial 87Sr/86Sr ratios of the Centre 1 granites indicate a substantial crustal contribution and we consider that these granites formed by a combination of partial melting of Lewisian basement together with some magma derived by fractional crystallization of basaltic magma. In contrast, the chemical and isotope data for the Centre 2 and 3 granites are consistent with formation dominantly by fractional crystallization of basaltic magma, together with a relatively small proportion of crustal contamination. A model is proposed which emphasises that acid magmatism in Mull is a consequence of the rise and crystallization of basic magma into continental crust. Granite magma has formed both by partial melting and by fractional crystallization and both of these events probably occurred under open system conditions.With oxygen isotope analyses by J.J. Durham, Geochemical Division, Institute of Geological Sciences, 64–78 Grays Inn Road, London, WC1X 8NG, England  相似文献   
9.
10.
The palaeomagnetism of the Tertiary igneous complex of Ardnamurchan   总被引:1,自引:0,他引:1  
Summary. Samples have been taken systematically through the intrusive sequence for the three centres which form the Tertiary central intrusive ring complex. Palaeomagnetic measurements show that all the units are reversely magnetized as are the earlier lavas – an extension of those of Mull and Morvern – which they intrude. This is in contrast to Mull, Skye and Arran, where the igneous sequences have been shown to span at least three polarity intervals, but is similar to Rhum where the only normal units are a few late dykes. Since Rhum and Ardnamuchan both lie on the dyke swarm which passes through Muck, the two complexes are considered to be closely related. If the Ardnamurchan central complex was formed in a single reversed interval the total duration of igneous activity was less than 3 Myr.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号