首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   4篇
  国内免费   11篇
地球物理   34篇
地质学   19篇
海洋学   11篇
综合类   1篇
自然地理   11篇
  2023年   1篇
  2022年   1篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2011年   1篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   6篇
  2005年   5篇
  2004年   9篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   8篇
  1997年   4篇
  1996年   5篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
1.
Timing of the Nihewan formation and faunas   总被引:2,自引:0,他引:2  
Magnetostratigraphic dating of the fluvio-lacustrine sequence in the Nihewan Basin, North China, has permitted the precise timing of the basin infilling and associated Nihewan mammalian faunas. The combined evidence of new paleomagnetic findings from the Hongya and Huabaogou sections of the eastern Nihewan Basin and previously published magnetochronological data suggests that the Nihewan Formation records the tectono-sedimentary processes of the Plio-Pleistocene Nihewan Basin and that the Nihewan faunas can be placed between the Matuyama-Brunhes geomagnetic reversal and the onset of the Olduvai subchron (0.78-1.95 Ma). The onset and termination of the basin deposition occurred just prior to the Gauss-Matuyama geomagnetic reversal and during the period from the last interglaciation to the late last glaciation, respectively, suggesting that the Nihewan Formation is of Late Pliocene to late Pleistocene age. The Nihewan faunas, comprising a series of mammalian faunas (such as Maliang, Donggutuo, Xiaochangliang, Banshan, Majuangou, Huabaogou, Xiashagou, Danangou and Dongyaozitou), are suggested to span a time range of about 0.8-2.0 Ma. The combination of our new and previously published magnetostratigraphy has significantly refined the chronology of the terrestrial Nihewan Formation and faunas.  相似文献   
2.
红粘土的磁学性质研究   总被引:17,自引:2,他引:17  
本文对陕西宝鸡剖面红粘土上部进行了详细的岩石磁学研究,确定了该地区红粘土的主要磁性矿物是磁铁矿。赤铁矿相对含量很少,对剩余磁性贡献较小。磁性质不稳定的磁赤铁矿存在于红粘土中,但不影响剩磁稳定性。特征剩磁载体主要是磁铁矿。磁性矿物的粒度是以准单畴为主。红粘土的短时间弛豫粘滞剩磁很强,因此在零磁空间进行退磁和剩磁测量是非常重要的。  相似文献   
3.
4.
5.
40Ar/39Ar method is a high precision dating means, of which the age is obtained by contrasting the un- known sample with those of standards. Usually the age of standard is determined by K-Ar method in which the 38Ar spike should be added for measurement. However, the absolute concentration of 38Ar spike is measured through the calibrated standards in turn, al- though occasionally the concentration of 38Ar spike is determined by other dating methods, such as Rb-Sr, U-Pb methods, which is kn…  相似文献   
6.
Intercalibration of international and domestic 40Ar/39Ar dating standards   总被引:2,自引:0,他引:2  
Four international standards, Ga1550, MMhb-1, Lp-6, Bem 4M, and one domestic standard BT-1 have been intercalibrated. The repeated measurements on MMhb-1 with different mass demonstrate that MMhb-1 is inhomogeneous in age and its average age is 519.8 Ma. The results of Bern 4M and Lp-6 reflect that they have an invariable value of 40Ar*/39Ark (F) and the ages we obtained are consensus with their K-Ar age: Lp-6=127.7Ma; Bern 4M=18.2 Ma. Analyses of BT-1 age spectra, Ca/K and Cl/K spectra as well as inverse isochrons indicate that the sample is homogeneous and invariable and keeps close chemically, with its trapped argon isotope composition close to the atmosphere. The dating results show that age values are reproducible and steady, total fusion age, step-heating age, plateau age and isochron age are in accord with each other within the error range (2σ). Therefore, we recommend 28.7 Ma as the calibrated age of BT-1. We also discuss the variation in neutron flux gradients of Beijing 49-2 reactor. It was found that the neutron flux gradient varies considerably, and more monitors (standard samples) are needed to fix the trend of variation. The coefficient of the 49-2 reactor that transfers the ratio of production rate of 37ArCa/39ArK into Ca/K ratio is 1.78. This is different from that reported earlier, 2.0, which may be caused by the reconstruction of the reactor.  相似文献   
7.
Developing an accurate chronological framework is always a key issue in paleoclimatic studies. Magneto- stratigraphy has been a routine tool for such purposes. However, complexities arise for inter-profile correla- tions of magnetostratigraphy due to effects of the lock-in process. One good example is the “mystery” of the mismatching of stratigraphic locations of the Matuyama/Brunhes boundary (MBB) (occurred at ~780 ka) recorded in Chinese loess and marine sedi- ments. Tauxe et al.[1] con…  相似文献   
8.
采自菲尔德斯半岛白垩纪晚期和第三纪早期五个岩层单位的12个采点109块定向岩芯标本进行了系统的古地磁学测定,从中得知,55~45Ma时期,该区极位置与澳大利亚的同时期结果不同,它经历了大约20°~30°的南向水平移动与70°~80°的西向旋转,逐渐地构成了今日彼此相对位置的格架。文章绘制出南极洲的视极移曲线。  相似文献   
9.
The Neo-Tethys Ocean was an eastward-gaping triangular oceanic embayment between Laurasia to the north and Gondwana to the south.The Neo-Tethys Ocean was initiated from the Early Permian with mircoblocks rifted from the northern margin of Gondwana.As the microblocks drifted northwards,the Neo-Tethys Ocean was expanded.Most of these microblocks collided with the Eurasia continent in the Late Triassic,leading to the final closure of the Paleo-Tethys Ocean,followed by oceanic subduction of the Neo-Tethys oceanic slab beneath the newly formed southern margin of the Eurasia continent.As the splitting of Gondwana continued,African-Arabian,Indian and Australian continents were separated from Gondwana and moved northwards at different rates.Collision of these blocks with the Eurasia continent occurred at different time during the Cenozoic,resulting in the closure of the Neo-Tethys Ocean and building of the most significant Alps-Zagros-Himalaya orogenic belt on Earth.The tectonic evolution of the Neo-Tethys Ocean shows different characteristics from west to east:Multi-oceanic basins expansion,bidirectional subduction and microblocks collision dominate in the Mediterranean region;northward oceanic subduction and diachronous continental collision along the Zagros suture occur in the Middle East;the Tibet and Southeast Asia are characterized by multi-block riftings from Gondwana and multi-stage collisions with the Eurasia continent.The negative buoyancy of subducting oceanic slabs can be considered as the main engine for northward drifting of Gondwana-derived blocks and subduction of the Neo-Tethys Ocean.Meanwhile,mantle convection and counterclockwise rotation of Gondwana-derived blocks and the Gondwana continent around an Euler pole in West Africa in non-free boundary conditions also controlled the evolution of the Neo-Tethys Ocean.  相似文献   
10.
While a general concensus has recently been reached as to the causal relationship between the subduction of the west Pacific plate and the destruction of the North China Craton, a number of important questions remain to answer, including the initial subduction of west Pacific plate beneath the eastern Asian continent, the position of west Pacific subduction zone during the peak period of decratonization(i.e., Early Cretaceous), the formation age of the big mantle wedge under eastern Asia, and the fate of the subducted Pacific slab. Integration of available data suggests that the subduction of the western Pacific plate was initiated as early as Early Jurrasic and the subduction zone was situated to 2,200 km west of the present-day trench in the Early Creataceous, as a result of eastward migration of the Asian continent over a distance of ca. 900 km since the Early Cretaceous.The retreat of the subducting west Pacific plate started ~145 Ma ago, corresponding to the initial formation of the big mantle wedge system in the Early Cretaceous. The subduction of the Pacific slab excerted severe influence on the North China Craton most likely through material and energy echange between the big mantle wedge and overlying cratonic lithosphere. The evolution history of the west Pacific plate was reconstructed based on tectonic events. This allows to propose that the causes of phases A and B for the Yanshanian orogeny were respectively related to rapid low-angle subduction and to lowering subduction angle of the west Pacific plate. At ca. 130–120 Ma, the subduction of the west Pacific plate was characterized by increasing subducting angle, slab rollback and rapid trench retreat, leading to the final stagnation of the subducting slab within the mantle transition zone. This process may have significantly affected the physical property and viscosity of the mantle wedge above the stagnant slab, resulting in non-steady mantle flows. The ingression of slab-released melts/fluids would significantly lower the viscosity of the mantle wedge and overlying lithosphere, inducing decratonization. This study yields important bearings on the relationship between the subduction of the west Pacific plate and the evolution of the lithospheric mantle beneath the North China Craton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号