首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   4篇
  国内免费   6篇
测绘学   8篇
大气科学   40篇
地球物理   27篇
地质学   45篇
海洋学   9篇
天文学   7篇
综合类   5篇
自然地理   13篇
  2023年   4篇
  2022年   7篇
  2021年   3篇
  2020年   8篇
  2019年   6篇
  2018年   5篇
  2017年   6篇
  2016年   7篇
  2015年   5篇
  2014年   10篇
  2013年   7篇
  2012年   4篇
  2011年   5篇
  2010年   13篇
  2009年   5篇
  2008年   4篇
  2007年   2篇
  2006年   7篇
  2005年   5篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   7篇
  1995年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1924年   1篇
  1922年   1篇
  1921年   1篇
  1913年   1篇
排序方式: 共有154条查询结果,搜索用时 281 毫秒
1.
The circulation of the eastern tropical Pacific: A review   总被引:5,自引:9,他引:5  
During the 1950s and 1960s, an extensive field study and interpretive effort was made by researchers, primarily at the Scripps Institution of Oceanography, to sample and understand the physical oceanography of the eastern tropical Pacific. That work was inspired by the valuable fisheries of the region, the recent discovery of the equatorial undercurrent, and the growing realization of the importance of the El Niño phenomenon. Here we review what was learned in that effort, and integrate those findings with work published since then as well as additional diagnoses based on modern data sets.Unlike the central Pacific, where the winds are nearly zonal and the ocean properties and circulation are nearly independent of longitude, the eastern tropical Pacific is distinguished by wind forcing that is strongly influenced by the topography of the American continent. Its circulation is characterized by short zonal scales, permanent eddies and significant off-equatorial upwelling. Notably, the Costa Rica Dome and a thermocline bowl to its northwest are due to winds blowing through gaps in the Central American cordillera, which imprint their signatures on the ocean through linear Sverdrup dynamics. Strong annual modulation of the gap winds and the meridional oscillation of the Intertropical Convergence Zone generates a Rossby wave, superimposed on the direct forcing, that results in a southwestward-propagating annual thermocline signal accounting for major features of observed thermocline depth variations, including that of the Costa Rica Dome, the Tehuantepec bowl, and the ridge–trough system of the North Equatorial Countercurrent (NECC). Interannual variability of sea surface temperature (SST) and altimetric sea surface height signals suggests that the strengthening of the NECC observed in the central Pacific during El Niño events continues all the way to the coast, warming SST (by zonal advection) in a wider meridional band than the equatorially trapped thermocline anomalies, and pumping equatorial water poleward along the coast.The South Equatorial Current originates as a combination of equatorial upwelling, mixing and advection from the NECC, and Peru coastal upwelling, but its sources and their variability remain unresolved. Similarly, while much of the Equatorial Undercurrent flows southeast into the Peru Undercurrent and supplies the coastal upwelling, a quantitative assessment is lacking. We are still unable to put together the eastern interconnections among the long zonal currents of the central Pacific.  相似文献   
2.
Two cases of on-ice and off-ice air flow characterizing the opposite weather situations over the ice-edge zone in the northern Baltic Sea are analysed on the basis of aircraft observations, and modelled using atwo-dimensional mesoscale model. The stable boundary layer (SBL) during theon-ice flow exhibited little thermal modification, but a low-level jet (LLJ) was generated at the 250-m high top of the SBL. In the model, the LLJ was associated with inertial oscillations in space, while the baroclinicity explained the shape of the wind profile well above the SBL. Although the observed LLJ was most pronounced over the ice, the modelling suggests that it was not generated by the ice edge but by the coastline some 400 km upwind of the ice edge, where a much more drastic change in the thermal stratification and surface roughness took place. The generation, maintenance, and strength of the LLJ were very sensitive to the parameterization of turbulent mixing in the SBL. In the case of the off-ice flow, the modification of the air mass and the development of a convective boundary layer (CBL) both over the ice and open sea were reasonably well modelled. Sensitivity runs suggested that it was essential to take into account the effects of subgrid-scale leads, a forest in the archipelago (which was crossed by the air flow), and water vapour condensationinto ice crystals. The heat flux from leads was particularly important for the heatbudget of the CBL, and the observed growth of the CBL was partly due to theeffective mixing over the rough and relatively warm forest.  相似文献   
3.
Summary ?The long-term variations of upward terrestrial (E) and downward atmospheric (A) long-wave radiation fluxes above a pine stand in the southern part of the upper Rhine valley plain are analysed based on monthly mean values from 27 years of monitoring. Equivalent blackbody temperatures of the canopy and the atmosphere are calculated and compared to air temperatures at nearby sites. Based on 324 monthly values each, correlations between A and E as well as A and global radiation G are analysed. Only the former are highly correlated. Monthly mean values of long-wave radiation A can be calculated from air temperature, water vapour pressure and cloud cover. The long-term yearly average of equivalent blackbody temperature of the canopy is 0.6 K lower than kinetic air temperature at nearby sites. Only small, insignificant increases of both blackbody temperatures and air temperature are found. Despite the strong forest growth, it is surprising that the ratio of canopy emission temperature to air temperature did not change significantly. Relationships between the changes of general atmospheric circulation and equivalent blackbody temperatures of the canopy point to a strong dependence on shifts of general atmospheric flow. Received February 24, 2000; revised April 18, 2002; accepted July 20, 2002  相似文献   
4.
A case study of warm air advection over the Arctic marginalsea-ice zone is presented, based on aircraft observations with direct flux measurements carriedout in early spring, 1998. A shallow atmospheric boundary layer (ABL) was observed, which wasgradually cooling with distance downwind of the ice edge. This process was mainly connected with astrong stable stratification and downward turbulent heat fluxes of about 10–20 W m-2, but wasalso due to radiative cooling. Two mesoscale models, one hydrostatic and the other non-hydrostatic,having different turbulence closures, were applied. Despite these fundamental differences betweenthe models, the results of both agreed well with the observed data. Various closure assumptions had amore crucial influence on the results than the differences between the models.Such an assumption was, for example,the parameterization of the surface roughness for momentum (z0) and heat (zT). This stronglyaffected the wind and temperature fields not only close to the surface but also within and abovethe temperature inversion layer. The best results were achieved using a formulation for z0 that took intoaccount the form drag effect of sea-ice ridges together withzT = 0.1z0. The stability within theelevated inversion strongly depended on the minimum eddy diffusivity Kmin. A simple ad hocparameterization seems applicable, where Kmin is calculated as 0.005 timesthe neutral eddy diffusivity. Although the longwave radiative cooling was largest within the ABL, theapplication of a radiation scheme was less important there than above the ABL. This was related to theinteraction of the turbulent and radiative fluxes. To reproduce the strong inversion, it wasnecessary to use vertical and horizontal resolutions higher than those applied in most regional andlarge-scale atmospheric models.  相似文献   
5.
6.
7.
8.
9.
Summary During two measurement campaigns in 1992 (the Hartheim Experiment HartX- and an additional experiment in autumn), measurements of soil moisture were carried out in aPinus sylvestris stand at Hartheim on the Oberrhein. Several methods were used to determine soil water status. They were compared in terms of suitability for estimating stand evapotranspiration (ET) via soil water depletion. Measurements of tree water potential suggested that conductance of the trees was affected by soil water depletion during the period of the HartX campaign in spring 1992. We interpret the observations to indicate a lesser influence of soil water availability on tree transpiration during the autumn experiment.Eddy correlation and xylem sapflow measurements provided reference ET values with which to compare the stand ET calculations based on soil moisture measurements. Profile measurements of soil moisture showed that particularly in springtime when the lower soil layers are saturated with water, the water transport from depths below the major rooting zone is a very important factor affecting evaluation of stand ET. Decreases in soil water storage may be determined best with permanently installed soil moisture sensors such as used in tensiometric or TDR measurements that provide high resolution of changes over time.With 8 Figures  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号