首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
地球物理   4篇
  2021年   1篇
  2016年   1篇
  2010年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Basement rocks that occur along the northern margin of the South Kitakami Terrane in Japan consist of Ordovician ultramafic rocks (Hayachine ultramafic complex), gneissose amphibolite (Kuromoriyama amphibolite), and mafic rocks (Kagura igneous rocks, KIR). The KIR are composed of metagabbro, metadolerite, metabasalt, and minor felsic–intermediate dikes. Although the KIR contain green hornblende due to metamorphism of greenschist to epidote–amphibolite facies, they rarely retain primary brown hornblende. Approximately 30% of the metabasalt shows porphyritic textures, with phenocrysts of saussuritized plagioclase and/or altered mafic minerals. The geochemistry of the common metadolerite and metabasalt of the KIR shows a tholeiite trend, a low TiO2 content, and high Th/Nb and Ti/V ratios. The KIR are therefore indicative of a supra‐subduction zone tectonic setting, which implies a backarc origin (as also indicated by discrimination diagrams). Trace element patterns of the KIR resemble those of the backarc‐basin basalt of the Japan and Yamato basins in the Japan Sea. We propose that the KIR formed during backarc spreading from the Ordovician to Early Silurian. This view is supported by the geochemical data, the tectonic setting of the Hayachine ultramafic rocks, and the provenance of clastics within Silurian sedimentary rocks.  相似文献   
2.
The Kitakami Massif of the Tohoku district, Northeast Japan, consists mainly of the South Kitakami Belt (Silurian–Cretaceous forearc shallow-marine sediments, granitoids, and forearc ophiolite) and the North Kitakami Belt (a Jurassic accretionary complex). The Nedamo Belt (a Carboniferous accretionary complex) occurs as a small unit between those two belts. An accretionary unit in the Nedamo Belt is lithologically divided into the Early Carboniferous Tsunatori Unit and the age-unknown Takinosawa Unit. In order to constrain the accretionary age of the Takinosawa Unit, detrital zircon U–Pb dating was conducted. The new data revealed that the youngest cluster ages from sandstone and tuffaceous rock are 257–248 Ma and 288–281 Ma, respectively. The Early Triassic depositional age of the sandstone may correspond to a period of intense magmatic activity in the eastern margin of the paleo-Asian continent. A 30–40 my interval between the youngest cluster ages of the sandstone and the tuffaceous rock can be explained by the absence of syn-sedimentary zircon in the tuffaceous rock. The new detrital zircon data suggest that the Takinosawa Unit can be distinguished as an Early Triassic accretionary complex distinct from the Early Carboniferous Tsunatori Unit. This recognition establishes a long-duration northeastward younging polarity of accretionary units, from the Carboniferous to Early Cretaceous, in the northern Kitakami Massif. Lithological features and detrital zircon spectra suggest that the Early Triassic Takinosawa Unit in the Nedamo Belt is comparable with the Hisone and Shingai units in the Kurosegawa Belt in Shikoku. The existence of this Early Triassic accretionary complex strongly supports a pre-Jurassic geotectonic correlation and similarity between Southwest and Northeast Japan.  相似文献   
3.
4.
Takayuki  Uchino  Makoto  Kawamura 《Island Arc》2010,19(1):177-191
The Nedamo Terrane, an Early Carboniferous accretionary complex, is the oldest biostratigraphically dated accretionary complex in Japan. The purpose of this study is to describe and interpret a conglomerate from the Nedamo Terrane that contains clasts of high-pressure/low-temperature (high- P/T ) schist (mainly garnet-bearing phengite schist) and ultramafic rock, and to infer the tectonics of an Early Carboniferous arc–trench system at the eastern margin of the paleo-Asian continent. Clasts of high- P/T schist and ultramafic rock within the conglomerate make up 8.4 and 6.7% of the total clasts, respectively, based on modal counts. These clasts are subangular to subrounded, whereas volcanic clasts are well rounded. The source of the schist clasts, which yield a radiometric age of 347–317 Ma, is considered to be the Renge Metamorphic Rocks of Southwest Japan or equivalent rocks. Based on the chemical composition of chromian spinel, the source of ultramafic clasts is inferred to be the island-arc-type Ordovician Miyamori and Hayachine ultramafic complexes in the Kitakami Massif. The conglomerate records multiple provenance regions, including an island arc (South Kitakami Terrane) and a forearc ridge; the high P/T schist and ultramafic rocks were exhumed in the forearc region. The duration of the interval from the early stages of exhumation of the schist to its deposition in the trench as clasts is estimated to have been less than 30 my.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号