首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   2篇
地质学   1篇
天文学   1篇
  2018年   1篇
  2017年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Kalmykov  N. P.  Budaev  R. Ts. 《Doklady Earth Sciences》2018,483(2):1487-1490
Doklady Earth Sciences - Based on geochronological data, it is shown that the formation of sediments of a 50–80 m terrace of Lake Baikal occurred during the Middle Pleistocene and its top...  相似文献   
2.
The statistical features of the magnetic field and ion flux fluctuations in the boundary regions of the Earth’s magnetosphere have been studied on different timescales based on the Interball satellite measurements. Changes in the form and parameters of the probability density function have been studied for the periods when the satellite was in the solar wind plasma, different magnetosheath regions, and the turbulent boundary layer (TBL) at the polar cusp outer boundary. Variations in the probability density function maximum (P 0) and the kurtosis value as characteristics of the turbulence property evolution on different timescales have been studied. Two asymptotic regimes of P 0, which are characterized by different power laws, have been found. The structural functions of different orders and the types of diffusion processes in different regions, depending on time variations in the generalized diffusion coefficient, have been studied in order to analyze the character of diffusion processes. For the magnetosheath regions, TBL, and polar cusp, it has been found that the diffusion coefficient increases in the course of time (i.e., the regime of superdiffusion has been obtained). In the foreshock region before the main shock, turbulent processes are described by the Kolmogorov model of classical diffusion.  相似文献   
3.
The scientific rationale of the ROY multi-satellite mission addresses multiscale investigations of plasma processes in the key magnetospheric regions with strong plasma gradients, turbulence and magnetic field annihilation in the range from electron inertial length to MHD scales.The main scientific aims of ROY mission include explorations of:
(a)
turbulence on a non-uniform background as a keystone for transport processes;
(b)
structures and jets in plasma flows associated with anomalously large concentration of kinetic energy; their impact on the energy balance and boundary formation;
(c)
transport barriers: plasma separation and mixing, Alfvenic collapse of magnetic field lines and turbulent dissipation of kinetic energy;
(d)
self-organized versus forced reconnection of magnetic field lines;
(e)
collisionless shocks, plasma discontinuities and associated particle acceleration processes.
In the case of autonomous operation, 4 mobile spacecrafts of about 200 kg mass with 60 kg payload equipped with electro-reactive plasma engines will provide 3D measurements at the scales of 100-10000 km and simultaneous 1D measurements at the scales 10-1000 km. The latter smaller scales will be scanned with the use of radio-tomography (phase-shift density measurements within the cone composed of 1 emitting and 3 receiving spacecrafts).We also discuss different opportunities for extra measurement points inside the ROY mission for simultaneous measurements at up to 3 scales for the common international fleet.Combined influence of intermittent turbulence and reconnection on the geomagnetic tail and on the nonlinear dynamics of boundary layers will be explored in situ with fast techniques including particle devices under development, providing plasma moments down to 30 ms resolution.We propose different options for joint measurements in conjunction with the SCOPE and other missions:
simultaneous sampling of low- and high-latitudes magnetopause, bow shock and geomagnetic tail at the same local time;
tracing of magnetosheath streamlines from the bow shock to near-Earth geomagnetic tail;
passing “through” the SCOPE on the inbound orbit leg;
common measurements (with SCOPE and other equatorial spacecraft) at distances of ∼ few thousand km for durations of ∼several hours per orbit.
The orbit options and scientific payload of possible common interest are discussed in this work, including FREGAT cargo opportunities for extra payload launching and the “Swarm” campaigns with ejection of nano- and pico-satellites.  相似文献   
4.
The properties of turbulent fluctuations of the solar wind plasma near the interplanetary shock observed at September 12, 2014 by the BMSW instrument are considered. The spectra of the density fluctuations in the solar wind and their statistical characteristics up-and downstream of the shock front are analyzed. They are compared with each other and with characteristics corresponding to different turbulence models. It is shown that the spectral and statistical characteristics of the density fluctuations in the solar wind conserve their basic properties after the arrival of an interplanetary shock. Intermittency is observed both before and after the front, but its level increases on average in the second case. In both regions, the scaling of the structure functions of the density fluctuations in the solar wind differ from the scaling of the classical Kolmogorov model and can be described by the log-Poisson turbulence model. Parameterization of the scaling of the structure functions revealed the presence of filamentary structures in the solar wind plasma, which provide the density intermittency in the studied space regions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号