首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
大气科学   1篇
地球物理   2篇
地质学   23篇
海洋学   2篇
自然地理   4篇
  2015年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有32条查询结果,搜索用时 56 毫秒
1.
Late Pleistocene glacial and lake history of northwestern Russia   总被引:1,自引:0,他引:1  
Five regionally significant Weichselian glacial events, each separated by terrestrial and marine interstadial conditions, are described from northwestern Russia. The first glacial event took place in the Early Weichselian. An ice sheet centred in the Kara Sea area dammed up a large lake in the Pechora lowland. Water was discharged across a threshold on the Timan Ridge and via an ice-free corridor between the Scandinavian Ice Sheet and the Kara Sea Ice Sheet to the west and north into the Barents Sea. The next glaciation occurred around 75-70 kyr BP after an interstadial episode that lasted c. 15 kyr. A local ice cap developed over the Timan Ridge at the transition to the Middle Weichselian. Shortly after deglaciation of the Timan ice cap, an ice sheet centred in the Barents Sea reached the area. The configuration of this ice sheet suggests that it was confluent with the Scandinavian Ice Sheet. Consequently, around 70-65 kyr BP a huge ice-dammed lake formed in the White Sea basin (the 'White Sea Lake'), only now the outlet across the Timan Ridge discharged water eastward into the Pechora area. The Barents Sea Ice Sheet likely suffered marine down-draw that led to its rapid collapse. The White Sea Lake drained into the Barents Sea, and marine inundation and interstadial conditions followed between 65 and 55 kyr BP. The glaciation that followed was centred in the Kara Sea area around 55-45 kyr BP. Northward directed fluvial runoff in the Arkhangelsk region indicates that the Kara Sea Ice Sheet was independent of the Scandinavian Ice Sheet and that the Barents Sea remained ice free. This glaciation was succeeded by a c. 20-kyr-long ice-free and periglacial period before the Scandinavian Ice Sheet invaded from the west, and joined with the Barents Sea Ice Sheet in the northernmost areas of northwestern Russia. The study area seems to be the only region that was invaded by all three ice sheets during the Weichselian. A general increase in ice-sheet size and the westwards migrating ice-sheet dominance with time was reversed in Middle Weichselian time to an easterly dominated ice-sheet configuration. This sequence of events resulted in a complex lake history with spillways being re-used and ice-dammed lakes appearing at different places along the ice margins at different times.  相似文献   
2.
Shallow seismic data and vibrocore information, sequence stratigraphic and faunal evidence have been used for documentation of Late Weichselian reactivation of faulting in the south central Kattegat, southern Scandinavia. The study area is situated on the Fennoscandian Border Zone, where tectonic activity has been recurrent since Early Palaeozoic time and still occurs, as shown by present earthquake activity. New data from the area south of the island of Anholt show that after deglaciation fast isostatic rebound resulted in reactivation of a NW-SE striking normal fault system. This tectonic episode is dated to a period starting shortly before 15.0 cal. ka BP and ending around 13.5 cal. ka BP, after regression had already reached a level of about 30 m b.s.l. The vertical displacement associated with the faulting was in the order of 20 m. More generally, the results support the previously reported late Weichselian sea-level highstand, which was followed by forced regression until the eustatic sea-level rise surpassed the rate of glacio-isostatic rebound in early Preboreal. Our findings further imply that drainage of the Baltic Ice Lake through the Øresund at c. 15 cal. ka BP (Bergsten & Nordberg 1992) may have been triggered by tectonic activity in this region.  相似文献   
3.
Late- and postglacial history of the Great Belt, Denmark   总被引:3,自引:0,他引:3  
On the basis of shallow seismic records, vibrocoring, macrofossil analyses and AMS radiocarbon-dating, five stratigraphical units have been distinguished from the deepest parts of the central Great Belt (Storebælt) in southern Scandinavia. Widespread glacial deposits are followed by two lateglacial units confined to deeply incised channels and separated by an erosional boundary. Lateglacial Unit I dates from the time interval from the last deglaciation to the Allerød; lateglacial Unit II is of Younger Dryas age. Early Holocene deposits show a development from river deposits and lake-shore deposits to large lake deposits, corresponding to a rising shore level. Lake deposits are found up to 20 m below the sea floor, and the lake extended over some 200–300 km2. The early Holocene freshwater deposits are dated to the time interval c. 10900 to c. 8800 cal. yr BP and the oldest shells of marine molluscs from the Great Belt are dated to c. 8100 cal. yr BP.  相似文献   
4.
Temperature modeling around the Vejrum salt structure in Denmark shows that the heat flow near the top is twice the regional heat flow. The temperature in the vicinity of the top of the diapir is thus anomalously high. Overlying permeable formations could therefore be attractive for geothermal energy exploitation. A negative temperature anomaly of ?20°C is calculated around the root of the salt body. Comparisons between calculated and measured temperatures are used to test the model. It is shown that measurements of heat flow (or temperature gradients) in wells penetrating the region of groundwater circulation could be used in identification of salt diapirs.  相似文献   
5.
From the Sellevollmyra bog at Andøya, northern Norway, a 440‐cm long peat core covering the last c. 7000 calendar years was examined for humification, loss‐on‐ignition, microfossils, macrofossils and tephra. The age model was based on a Bayesian wiggle‐match of 35 14C dates and two historically anchored tephra layers. Based on changes in lithology and biostratigraphical climate proxies, several climatic changes were identified (periods of the most fundamental changes in italics): 6410–6380, 6230–6050, 5730–5640, 5470–5430, 5340–5310, 5270–5100, 4790–4710, 4890–4820, 4380–4320, 4220–4120, 4000–3810, 3610–3580, 3370–3340 (regionally 2850–2750; in Sellevollmyra a hiatus between 2960–2520), 2330–2220, 1950, 1530–1450, 1150–840, 730? and c. 600? cal. yr BP. Most of these climate changes are known from other investigations of different palaeoclimate proxies in northern and middle Europe. Some volcanic eruptions seemingly coincide with vegetation changes recorded in the peat, e.g. about 5760 cal. yr BP; however, the known climatic deterioration at the time of the Hekla‐4 tephra layer started some decades before the eruption event.  相似文献   
6.
A 140.2 m deep boring (BH 81/29) from the central North Sea (British sector) has been investigated for its foraminiferal content. Fourteen assemblage zones are identified, and these are correlated with other records from the North Sea region. The stratigraphical interpretation of BH 81/29 is supported by palaeomagnetic data and by amino acid dates and thermoluminescence dates from the same boring. Foraminiferal zones 14 to 8, from the bottom of the core, have been referred to the Early Pleistocene. Zones 7 to 4, which occur above the Bruhnes/Matuyama boundary, seem to belonged in the Middle Pleistocene, and zones 3 to 1 are referred to the Late Pleistocene. A characteristic feature of the present sequence is that a major part of the Quaternary record seems to be missing. As is also known from other areas of the North Sea, interglacial deposits are especially badly represented.  相似文献   
7.
One of the most discussed stages in the history of the Baltic Sea is the Ancylus Lake phase. This paper presents detailed information from the Darss Sill threshold area as well as the adjacent basins, i.e. the Mecklenburg Bay and Arkona Basin located in the southwesternmost Baltic. The threshold area was transgressed at the Baltic Ice Lake maximum phase and during the following regression about 10.3 ka BP a river valley was incised in the Darss Sill to a level of 23-24 m below present sea level (b.s.l.). Preboreal sediments in the study area show lowstand basin deposition in the Arkona Basin and the existence of a local lake in Mecklenburg Bay. The lowstand system is followed by the Ancylus Lake transgression that reached a maximum level of 19 m b.s.l. Thus, at the maximum level the water depth was about 5 m over the threshold, and the shore level fall during the Ancylus Lake regression must be in the same range. The Darss Sill area is the key area for drainage of the Ancylus Lake, and if the previously suggested regression of 8-10 m in southeastern Sweden is to be achieved, isostatic rebound must also play a role. The existence of the so-called Dana River in the Darss Sill area cannot be supported by our investigations. We observed no signs of progressive erosion of the Darss Sill area in the Early Holocene, and there are no prograding systems in Mecklenburg Bay that can be related to the Ancylus Lake regression. On the contrary, local lakes developed in Mecklenburg Bay and in the Darss Sill threshold area. In the Darss Sill area, marl was deposited in a lake in the valley that developed after the final drainage of the Baltic Ice Lake. Studies of diatoms and macrofossils, combined with seismic interpretation and radiocarbon dating, provide detailed information about the chronology and the relative shore level of these lake phases as well as about environmental conditions in the lakes.  相似文献   
8.
A coordinated geological-archaeological investigation has been carried out in southern Disko Bugt with the primary purpose of elucidating Holocene relative sea-level (RSL) changes. Two RSL curves representing the Early-Middle Holocene emergence of respectively southeastern and southwestern Disko Bugt have been constructed. Elevations of paleo-Eskimo sites of different ages have been surveyed and supplemented with similar elevations compiled from the literature. Detailed investigations have been carried out at two partly submerged Dorset I sites. At both sites, the stratigraphy of the foreshore has been recorded in terrain profiles.
It is concluded that the RSL history of southern Disko Bugt was one of steady emergence during Early-Middle Holocene followed by submergence in Late Holocene. The stratigraphy of the foreshore at the two Dorset I sites indicates that RSL has been at least 2-2.5 m below sea-level, and that the Transgression to present sea-level started after ca 1 ka B.P.  相似文献   
9.
Shallow seismic profiling indicated the presence of a drowned lagoon-barrier system formed during the transgression of the southern Kattegat, and investigations of core material have confirmed this. Studies of plant and animal macrofossils show that the lagoonal sediments contain a mixture of marine, brackish, lacustrine, telmatic and terrestrial taxa, and analyses of foraminifers indicate brackish-water conditions. Low oxygen isotope values obtained on shells of marine molluscs also point to lowered salinity. The lagoonal sediments are situated at depths between 24 and 35 m below present sea level. They are dated to between c. 10.5 cal. ka BP and c. 9.5 cal. ka BP, and reflect a period characterized by a moderate relative sea level rise. The lagoonal sediments are underlain by lateglacial glaciomarine clay and silt, which are separated from the Holocene deposits by an unconformity. The earliest Holocene sediments consist of littoral sand with gravel, stones and shells; these sediments were formed during the transgression of the area before the barrier island-lagoon system was developed. The lagoonal sediments are overlain by mud, which contains animal remains that indicate increasing water depths.  相似文献   
10.
Excellent exposures of thick, multistorey, fluvial deposits from the deltaic Atane Formation on south‐east Nuussuaq, central West Greenland, show the architecture of up to 100 m thick continuously aggrading fluvial depositional complexes. The succession comprises vertically stacked channel belt sandstones separated by thin floodplain deposits, with little to no incision between storeys. Architectural elements and palaeocurrent patterns of channel deposits indicate deposition in large, relatively stable, low‐sinuosity rivers, probably located within an incised valley. Gradual transitions from channel to floodplain deposits accompanied by a gradual change from floodplain to spillover sand suggest avulsion on the floodplain as a possible mechanism for the vertically alternating channel and floodplain deposits. Despite its relative proximity to contemporaneous sea‐level (ca 35 km upstream from the palaeo‐shoreline) the depositional complex is entirely non‐marine. The aggrading nature of the deposits suggests a continuously rising base level coupled with a high and steady sediment supply. Vertical alternations between floodplain and channel deposits may be forced by subtle interruptions in this balance or autocyclic mechanisms on the floodplain. This study provides an example of aggrading lowstand/non‐marine transgressive systems tract deposits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号