首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
地球物理   3篇
地质学   16篇
海洋学   2篇
天文学   5篇
自然地理   6篇
  2018年   2篇
  2015年   1篇
  2011年   2篇
  2010年   1篇
  2009年   5篇
  2008年   3篇
  2006年   2篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1972年   3篇
  1969年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
The Karbi Anglong hills (erstwhile Mikir hills) in northeast India are detached and separated from the Meghalaya plateau by a NW-SE trending Kopili rift. The Karbi Anglong hills granitoids (KAHG) and its granite gneissic variants belong to Cambrian plutons formed during Pan-African orogenic cycle, which commonly intrude the basement granite gneisses and Shillong Group metasediments. The KAHG can be broadly classified into three major granitoid facies viz., coarse grained porphyritic granitoid, medium grained massive non-porphyritic granitoid, and granite gneiss, which share a common mineral assemblage of plagioclase-K-feldspar-quartz-biotite±hornblende-apatite-titanite-zircon-magnetite but differ greatly in mineral proportion and texture. Modal mineralogy of KAHG, granite gneiss and basement granite gneiss largely represents monzogranite and syenogranite. The magnetic susceptibility (MS) of the KAHG, granite gneiss and basement granite gneiss varies widely between 0.11×10-3 and 43.144×10-3 SI units, corresponding to ilmenite series (<3×10-3 SI; reduced type) and magnetite series (>3×10-3 SI; oxidized type) of granitoids respectively. The observed MS variations are most likely intrinsic to heterogeneous source regions, modal variations of orthomagnetic and ferromagnetic minerals, and tectonothermal and deformational processes that acted upon these rocks. The primary and re-equilibrated compositions of biotites from the KAHG, granite gneiss and basement granite gneiss suggest calcalkaline, metaluminous (I-type) nature of felsic host magma formed in a subduction or post-collisional to peraluminous (S-type) host magma originated in syn-collisional tectonic settings, which were evolved and stabilized between FMQ and NNO buffers typically corresponding to reducing and oxidising magma environments respectively.  相似文献   
2.
3.
4.
Palaeoproterozoic (ca 2,480 Ma) felsic magmatism of Malanjkhand region of central Indian Precambrian shield, referred to as Malanjkhand granitoids (MG), contain xenoliths of country rocks and mesocratic to melanocratic, fine-grained porphyritic microgranular enclaves (ME). The shape of ME is spheroidal, ellipsoidal, discoidal, elongated, and lenticular, varying in size from a few centimeters to about 2 m across. The contact of ME with the host MG is commonly sharp, crenulate, and occasionally diffuse, which we attribute to the undercooling and disaggregation of ME globules within the cooler host MG. The ME as well as MG show hypidiomorphic texture with common mineral Hbl-Bt-Kfs-Pl-Qtz assemblage, but differ in modal proportions. The variation in minerals' composition, presence of apatite needles, elongated biotites, resorbed plagiclase, ocellar quartz, and other mafic–felsic xenocrysts strongly oppose the restite and cognate origins of ME. Compositions of plagioclases (An3–An29), amphiboles (Mg/Mg+Fe2+=0.55–0.69), and biotites (Mg/Mg+Fe2+=0.46–0.60) of ME are slightly distinct or similar to those of MG, which suggest partial to complete equilibration during mafic–felsic magma interactions. Al-in-amphibole estimates the MG pluton emplacement at ca 3.4 ± 0.5 kbar, and therefore, magma mixing and mingling must have occurred at or below this level. The substitution in biotites of ME and MG largely suggests subduction-related, calc–alkaline metaluminous (I-type) nature of felsic melts. Most major and trace elements against SiO2 produce near linear variation trends for ME and MG, probably generated by the mixing of mafic and felsic magmas in various proportions. Trace including rare earth elements patterns of ME–MG pairs, however, show partial to complete equilibration, most likely governed by different degrees of elemental diffusion. The available evidence supports the model of ME origin that coeval mafic (enclave) and felsic (MG) magmas produced a hybrid (ME) magma layer, which injected into cooler, partly crystalline MG, and dispersed, mingled, and undercooled as ME globules in a convectively dynamic magma chamber.  相似文献   
5.
6.
7.
8.
In the Mediterranean Sea, top predators, and particularly cetacean odontocetes, accumulate high concentrations of organochlorine contaminants and toxic metals, incurring high toxicological risk. In this paper we investigate the use of the skin biopsies as a non-lethal tool for evaluating toxicological hazard of organochlorines in Mediterranean cetaceans, presenting new data 10 years after the paper published by Fossi and co-workers [Mar. Poll. Bull. 24 (9) (1992) 459] in which this new methodology was first presented. Some organochlorine compounds, now with worldwide distribution, are known as endocrine disrupting chemicals (EDCs). Here the unexplored hypothesis that Mediterranean cetaceans are potentially at risk due to organochlorines with endocrine disrupting capacity is investigated. High concentrations of DDT metabolites and PCB congeners (known as EDCs) were found in the different Mediterranean species (Stenella coeruleoalba, Delphinus delphis, Tursiops truncatus and Balaenoptera physalus). In this paper we also propose benzo(a)pyrene monooxygenase (BPMO) activity in marine mammal skin biopsies (non-lethal biomarker) as a potential indicator of exposure to organochlorines, with special reference to the compounds with endocrine disrupting capacity. A statistically significant correlation was found between BPMO activity and organochlorine levels (DDTs, pp(')DDT, op(')DDT, PCBs and PCB99) in skin biopsies of males of B. physalus. Moreover a statistical correlation was also found between BPMO activity and DDT levels in skin biopsies of the endangered Mediterranean population of D. delphis. These results suggest that BPMO induction may be an early sign of exposure to organochlorine EDCs and can be used for periodic monitoring of Mediterranean marine mammal toxicological status.  相似文献   
9.
10.
Archaeological sites composed only of surficial lithics are widespread in arid environments. Numerical dating of such sites is challenging, however, and even establishing a relative chronology can be daunting. One potentially helpful method for assigning relative chronologies is to use lithic weathering, on the assumption that the most weathered artifacts are also the oldest. Yet, few studies have systematically assessed how local environmental processes affect weathering of surficial lithics. Using macroscopic analyses, we compared the weathering of surficial lithic assemblages from seven mid‐to‐late Holocene archaeological sites sampled from four different microenvironments in the Atacama Desert of northern Chile. Changes in polish, texture, shine, and color were used to establish significant differences in weathering between two kinds of locations: interfluves and canyon sites. Lithics from interfluve sites were moderately to highly weathered by wind and possessed a dark coating, whereas canyon lithics were mildly weathered despite greater exposure to moisture, often lacked indications of eolian abrasion, and lacked dark coatings. Our results show that lithic weathering can be used as a proxy for relative age, but only after considering local environmental factors. The power of such chronologies can be improved by combining archaeological, paleoenvironmental, geomorphological, and taphonomic data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号