首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地质学   6篇
天文学   1篇
  2014年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  1988年   1篇
  1980年   1篇
排序方式: 共有7条查询结果,搜索用时 234 毫秒
1
1.
Non-conservative behavior of dissolved inorganic phosphate (DIP) in estuaries is generally ascribed to desorption from iron and aluminum (hydr)oxides with increasing salinity. Here, we assess this hypothesis by simulating the reversible adsorption of phosphate onto a model oxide (goethite) along physico-chemical gradients representative of surface and subsurface estuaries. The simulations are carried out using a surface complexation model (SCM), which represents the main aqueous speciation and adsorption reactions of DIP, plus the ionic strength-dependent coulombic interactions in solution and at the mineral-solution interface. According to the model calculations, variations in pH and salinity alone are unlikely to explain the often reported production of DIP in surface estuaries. In particular, increased aqueous complexation of phosphate by Mg2+ and Ca2+ ions with increasing salinity is offset by the formation of ternary Mg-phosphate surface complexes and the drop in electrical potential at the mineral-water interface. However, when taking into account the downstream decrease in the abundance of sorption sites, the model correctly simulates the observed release of DIP in the Scheldt estuary. The sharp increase in pH accompanying the admixing of seawater to fresh groundwater should also cause desorption of phosphate from iron oxyhydroxides during seawater intrusion in coastal aquifers. As for surface estuaries, the model calculations indicate that significant DIP release additionally requires a reduction in the phosphate sorption site density. In anoxic aquifers, this can result from the supply of seawater sulfate and the subsequent reductive dissolution of iron oxyhydroxides coupled to microbial sulfate reduction.  相似文献   
2.
A two-dimensional (2D) reactive transport model is used to investigate the controls on nutrient (, , PO4) dynamics in a coastal aquifer. The model couples density-dependent flow to a reaction network which includes oxic degradation of organic matter, denitrification, iron oxide reduction, nitrification, Fe2+ oxidation and sorption of PO4 onto iron oxides. Porewater measurements from a well transect at Waquoit Bay, MA, USA indicate the presence of a reducing plume with high Fe2+, , DOC (dissolved organic carbon) and PO4 concentrations overlying a more oxidizing -rich plume. These two plumes travel nearly conservatively until they start to overlap in the intertidal coastal sediments prior to discharge into the bay. In this zone, the aeration of the surface beach sediments drives nitrification and allows the precipitation of iron oxide, which leads to the removal of PO4 through sorption. Model simulations suggest that removal of through denitrification is inhibited by the limited overlap between the two freshwater plumes, as well as by the refractory nature of terrestrial DOC. Submarine groundwater discharge is a significant source of to the bay.  相似文献   
3.
Iron-oxide-coated sediment particles in subterranean estuaries can act as a geochemical barrier (“iron curtain”) for various chemical species in groundwater (e.g. phosphate), thus limiting their discharge to coastal waters. Little is known about the factors controlling this Fe-oxide precipitation. Here, we implement a simple reaction network in a 1D reactive transport model (RTM), to investigate the effect of O2 and pH gradients along a flow-line in the subterranean estuary of Waquoit Bay (Cape Cod, Massachusetts) on oxidative precipitation of Fe(II) and subsequent PO4 sorption. Results show that the observed O2 gradient is not the main factor controlling precipitation and that it is the pH gradient at the mixing zone of freshwater (pH 5.5) and seawater (pH 7.9) near the beach face that causes a  7-fold increase in the rate of oxidative precipitation of Fe(II) at  15 m. Thus, the pH gradient determines the location and magnitude of the observed iron oxide accumulation and the subsequent removal of PO4 in this subterranean estuary.  相似文献   
4.
Humic acids were isolated from 5 sediments in which the origin nature of the organic matter are both typical and different. The humic acids were characterized on the basis of elemental compositions, infrared spectra and 1H and 13C NMR. This last technique, especially 13C NMR, provides qualitative and semi-quantitative information regarding aromatic structure. Combined data from the three techniques permits differentiation of marine and terrestrial organic matter as well as identification of mixtures of humic acids from the two sources.  相似文献   
5.
Ten splash‐form tektites from the Australasian strewn field, with masses ranging from 21.20 to 175.00 g and exhibiting a variety of shapes (teardrop, ellipsoid, dumbbell, disk), have been imaged using a high‐resolution laser digitizer. Despite challenges due to the samples’ rounded shapes and pitted surfaces, the images were combined to create 3‐D tektite models, which captured surface features with a high fidelity (≈30 voxel mm?2) and from which volume could be measured noninvasively. The laser‐derived density for the tektites averaged 2.41 ± 0.11 g cm?3. Corresponding densities obtained via the Archimedean bead method averaged 2.36 ± 0.05 g cm?3. In addition to their curational value, the 3‐D models can be used to calculate the tektites’ moments of inertia and rotation periods while in flight, as a probe of their formation environment. Typical tektite rotation periods are estimated to be on the order of 1 s. Numerical simulations of air flow around the models at Reynolds numbers ranging from 1 to 106 suggest that the relative velocity of the tektites with respect to the air must have been <10 m s?1 during viscous deformation. This low relative velocity is consistent with tektite material being carried along by expanding gases in the early time following the impact.  相似文献   
6.
Alteration phenomena affecting organic matter during diagenesis frequently lead to the formation of residues almost insoluble. Data from 13C CP/MAS nuclear magnetic resonance analyses (NMR) of these residues have been compared to those obtained by other techniques such as elemental analysis, infrared spectroscopy, Rock-Eval pyrolysis or gas chromatography. Three examples of alteration phenomena have been chosen: the artificial and natural oxidation of coals, the biodegradation of oils and solid bitumens, and the radiolytic degradation of organic matter. NMR results and those obtained by other techniques converge on similar general conclusions. Additional information can be extracted from 13C NMR data: e.g. definition of the phenol/carbonyl ratio, transformation of the aromatic network and aromatic ring substitution. These comparisons are good evidence for the reliability of non-destructive analysis of the insoluble fraction of altered organic material by 13C CP/MAS NMR.  相似文献   
7.
This investigation was carried out within the scope of EU-FP5 project MAGPROX. In parallel with the work of Kalinski et al. (2004, submitted), in which the magnetic signatures of the same soil profiles were analysed in more detail. The ‘hot spot’ under investigation was situated in the Lausitz area, Eastern Germany, between two major power plants, Schwarze Pumpe and Boxberg. This heavily industrialized region is known as the Black Triangle, named after the large lignite deposits and the old-technology power plants, among other petrochemical plants, refineries, textile manufacturing and glasswork industries. The relationship between magnetic parameters and heavy metal concentrations (Fe, Mn, Zn, Pb, Cu, Cr, Cd, Co and Ni) in soil profiles was determined statistically using linear regression analysis. Strong positive correlation was observed between heavy metal concentrations as viewed preliminarily from the heavy metal and magnetic susceptibility distributions with depth (soil profiles), and from the correlation coefficients obtained.MAGPROX team–FP5 RTD Project No. EVK2-CT-1999-00019  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号