首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
地质学   2篇
  2021年   1篇
  2004年   1篇
  2001年   1篇
排序方式: 共有3条查询结果,搜索用时 31 毫秒
1
1.
The concept of in-plane and anti-plane shaking is introduced with a rigid block on a plane surface with Coulomb friction. Using a hypoplastic constitutive relation to model the mechanical behaviour of the soil, numerical solutions for a rigid block on a thin dry or saturated soil layer are obtained. The coupled nature of dynamic problems involving granular materials is shown, i.e. the motion of the block changes the soil state—skeleton stresses and density—which in turn affects the block motion. Motions of the block as well as soil response can be more realistically calculated by the new model. The same constitutive equation is applied to the numerical simulation of the propagation of plane waves in homogeneous and layered level soil deposits induced by a wave coming from below. Experiments with a novel laminar shake box as well as real seismic records from well-documented sites during strong earthquakes are used to verify the adequacy of the hypoplasticity-based numerical model for the prediction of soil response during strong earthquakes. The response of a homogeneous earth dam subjected to in-plane and anti-plane shaking is investigated numerically. In-plane and anti-plane shaking is shown to cause nearly the same spreading of a sand dam under drained conditions, whereas under undrained conditions anti-plane shaking causes stronger spreading of the dam. The dynamic behaviour of a breakwater founded on rockfill and soft clay during the 1995 Kobe earthquake is back-calculated to show the good performance of the proposed numerical model also with a structure. Section 9 deals with buildings on mattresses of densified cohesionless soils or fine-grained soils with granular columns, slopes with ‘hidden’ dams and structures on piles traversing clayey slopes to show the suitability of hypoplasticity-based models for the earthquake-resistant design and safety assessment of geotechnical systems.  相似文献   
2.
The problem of the symmetric quasi‐static large‐strain expansion of a cavity in an infinite granular body is studied. The body is assumed to be dry or fully drained so that the presence of the pore water can be disregarded. Both spherical and cylindrical cavities are considered. Numerical solutions to the boundary value problem are obtained with the use of the hypoplastic constitutive relation calibrated for a series of granular soils. As the radius of the cavity increases, the stresses and the density on the cavity surface asymptotically approach limit values corresponding to a so‐called critical state. For a given soil, the limit values depend on the initial stresses and the initial density. A comparison is made between the solutions for different initial states and different soils. Applications to geotechnical problems such as cone penetration test and pressuremeter test are discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
3.
Yan  Wei  Birle  Emanuel  Cudmani  Roberto 《Acta Geotechnica》2021,16(10):3187-3208
Acta Geotechnica - A soil water characteristic curve (SWCC) model named as discrete-continuous multimodal van Genuchten model with a convenient parameter calibration method is developed to describe...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号