首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   2篇
  国内免费   1篇
大气科学   2篇
地球物理   12篇
地质学   9篇
海洋学   3篇
天文学   5篇
自然地理   2篇
  2024年   1篇
  2021年   2篇
  2020年   2篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   6篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
Inflow of Atlantic water (AW) from Fram Strait and the Barents Sea into the Arctic Ocean conditions the intermediate (100–1000 m) waters of the Arctic Ocean Eurasian margins. While over the Siberian margin the Fram Strait AW branch (FSBW) has exhibited continuous dramatic warming beginning in 2004, the tendency of the Barents Sea AW branch (BSBW) has remained poorly known. Here we document the contrary cooling tendency of the BSBW through the analysis of observational data collected from the icebreaker Kapitan Dranitsyn over the continental slope of the Eurasian Basin in 2005 and 2006. The CTD data from the R.V. Polarstern cruise in 1995 were used as a reference point for evaluating external atmospheric and sea-ice forcing and oxygen isotope analysis. Our data show that in 2006 the BSBW core was saltier (by ~0.037), cooler (by ~0.41 °C), denser (by ~0.04 kg/m3), deeper (by 150–200 m), and relatively better ventilated (by 7–8 μmol/kg of dissolved oxygen, or by 1.1–1.7% of saturation) compared with 2005. We hypothesize that the shift of the meridional wind from off-shore to on-shore direction during the BSBW translation through the Barents and northern Kara seas results in longer surface residence time for the BSBW sampled in 2006 compared with samples from 2005. The cooler, more saline, and better-ventilated BSBW sampled in 2006 may result from longer upstream translation through the Barents and northern Kara seas where the BSBW was modified by sea-ice formation and interaction with atmosphere. The data for stable oxygen isotopes from 1995 and 2006 reveals amplified brine modification of the BSBW core sampled downstream in 2006, which supports the assumption of an increased upstream residence time as indicated by wind patterns and dissolved oxygen values.  相似文献   
2.
Major inorganic ions and stable carbon and oxygen isotopes in stream water, groundwater, groundwater seeps and springs were measured in the Corral Canyon meadow complex and watershed in the Toquima Mountains of central Nevada, USA. The purpose of the study was to determine whether stream water or groundwater was the source of water that supports vegetation in the meadow complex. Water samples from the watershed and meadow complex were mixed cation–HCO3 type. Stream water sampled at different locations in the meadow complex showed variations in temperature, pH and specific conductance. The cation–anion proportions for stream water were similar to groundwater, groundwater seeps and runoff from the meadow complex. Stable oxygen isotope ratios for stream water (?17·1 to ?17·6‰ versus VSMOW) and groundwater and groundwater seeps in the meadow site (?17·0 to ?17·7‰ versus VSMOW) were similar, and consistent with a local meteoric origin. Dissolved inorganic carbon (DIC) and the δ 13CDIC for stream water (?12·1 to ?15·0‰ versus VPDB) were different from that of groundwater from the meadow complex (?15·3 to ?19·9‰ versus VPDB), suggesting different carbon evolution pathways. However, a simple model based on cation–δ 13CDIC suggests that stream water was being recharged by shallow groundwater, groundwater seeps and runoff from the meadow complex. This leads to the conclusion that the source of water that supports vegetation in the meadow complex was primarily groundwater. The results of this study suggest that multiple chemical and stable carbon isotope tracers are useful in determining the source of water that supports vegetation in meadow complexes in small alpine watersheds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
3.
An experimental disposal of dredged material was performed in June 2001 at two adjacent sites in Mecklenburg Bay (western Baltic Sea) to investigate the impacts on a sublittoral fauna community (macrozoobenthos). Temporal changes in community parameters were analysed: Total abundance and multidimensional scaling (MDS) ordination results showed that dredged material disposal causes significant changes in benthic assemblages in comparison to the original situation before the disposal activities. The bivalves Arctica islandica and Macoma balthica were almost not affected by the disposal. Abundances of the polychaete N. hombergii as well as the epibenthic cumacean D. rathkei decreased by a factor of 1.4-3.9 whereas most other invertebrates suffered even more. Two years after the experimental disposal a high level of benthic recovery was found, but also a change in dominance structure. These changes are rather due to inter-annual variability in regional benthic recruitment processes in the Mecklenburg Bay than due to the disposal.  相似文献   
4.
This paper analyzes discourses and practices of flood response and adaptation to climate change in Mozambique. It builds on recent publications on climate change adaptation that suggest that the successes and failures of adaptation highly depend on the cultural and political realms of societal perceptions and the sensitivity of institutions. To capture this, the paper adopted a multi-sited ethnographic approach. Acknowledging that there is no central locus of representation that can unveil the working of disaster response in Mozambique, the paper brings together five vignettes of research in different ‘sites’ of concern to the rise in floods in Mozambique. These are the politics of climate change adaptation at the national institutional level, societal responses to increased flooding, local people's responses to floods, the evacuation and resettlement programme following the 2007 flood. The paper finds how adaptation to climate change becomes part of everyday politics, how actors aim to incorporate responses into the continuation of their normal behavior and how elites are better positioned to take advantage of adaptation programmes than the vulnerable people that were targeted. It argues that climate change adaptation must be made consonant with historically grown and ongoing social and institutional processes. It concludes with lessons that the analysis and methodology of the research can provide for the practice of climate change adaptation.  相似文献   
5.
We evaluate initial (26Al/27Al)I, (53Mn/55Mn)I, and (182Hf/180Hf)I ratios, together with 207Pb/206Pb ages for igneous differentiated meteorites and chondrules from ordinary chondrites for consistency with radioactive decay of the parent nuclides within a common, closed isotopic system, i.e., the early solar nebula. The relative initial isotopic abundances of 26Al, 53Mn, and 182Hf in differentiated meteorites and chondrules are consistent with decay from common solar system initial values, here denoted by I(Al)SS, I(Mn)SS, and I(Hf)SS, respectively. I(Mn)SS and I(Hf)SS = 9.1 ± 1.7 × 10−6 and 1.07 ± 0.08 × 10−4, respectively, correspond to “canonical” I(Al)SS = 5.1 × 10−5. I(Hf)SS so determined is consistent with I(Hf)SS = 9.72 ± 0.44 × 10−5 directly determined from an internal Hf-W isochron for CAI minerals. I(Mn)SS is within error of the lowest value directly measured for CAIs. We suggest that erratically higher values measured for CAIs in carbonaceous chondrites may reflect proton irradiation of unaccreted CAIs by the early Sun after other asteroids destined for melting by 26Al decay had already accreted. The 53Mn incorporated within such asteroids would have been shielded from further “local” spallogenic contributions from within the solar system. The relative initial isotopic abundances of the short-lived nuclides are less consistent with the 207Pb/206Pb ages of the corresponding materials than with one another. The best consistency of short- and long-lived chronometers is obtained for (182Hf/180Hf)I and the 207Pb/206Pb ages of angrites. (182Hf/180Hf)I decreases with decreasing 207Pb/206Pb ages at the rate expected from the 8.90 ± 0.09 Ma half-life of 182Hf. The model solar system age thus determined is TSS,Hf-W = 4568.3 ± 0.7 Ma. (26Al/27Al)I and (53Mn/55Mn)I are less consistent with 207Pb/206Pb ages of the corresponding meteorites, but yield TSS,Mn-Cr = 4568.2 ± 0.5 Ma relative to I(Al)SS = 5.1 × 10−5 and a 207Pb/206Pb age of 4558.55 ± 0.15 Ma for the LEW86010 angrite. The Mn-Cr method with I(Mn)SS = 9.1 ± 1.7 × 10−6 is useful for dating accretion (if identified with chondrule formation), primary igneous events, and secondary mineralization on asteroid parent bodies. All of these events appear to have occurred approximately contemporaneously on different asteroid parent bodies. For I(Mn)SS = 9.1 ± 1.7 × 10−6, parent body differentiation is found to extend at least to ∼5 Ma post-TSS, i.e., until differentiation of the angrite parent body ∼4563.5 Ma ago, or ∼4564.5 Ma ago using the directly measured 207Pb/206Pb ages of the D’Orbigny-clan angrites. The ∼1 Ma difference is characteristic of a remaining inconsistency for the D’Orbigny-clan between the Al-Mg and Mn-Cr chronometers on one hand, and the 207Pb/206Pb chronometer on the other. Differentiation of the IIIAB iron meteorite and ureilite parent bodies probably occurred slightly later than for the angrite parent body, and at nearly the same time as one another as shown by the Mn-Cr ages of IIIAB irons and ureilites, respectively. The latest recorded episodes of secondary mineralization are for carbonates on the CI carbonaceous chondrite parent body and fayalites on the CV carbonaceous chondrite parent body, both extending to ∼10 Ma post-TSS.  相似文献   
6.
Recent studies have highlighted the importance of understanding ecohydrological drought feedbacks to secure water resources under a changing climate and increasing anthropogenic impacts. In this study, we monitored and modelled feedbacks in the soil–plant-atmosphere continuum to the European drought summer 2018 and the following 2 years. The physically based, isotope-aided model EcH2O-iso was applied to generic vegetation plots (forest and grassland) in the lowland, groundwater-dominated research catchment Demnitzer Millcreek (NE Germany; 66 km2). We included, inter alia, soil water isotope data in the model calibration and quantified changing “blue” (groundwater recharge) and “green” (evapotranspiration) water fluxes and ages under each land use as the drought progressed. Novel plant xylem isotope data were excluded from calibration but were compared with simulated root uptake signatures in model validation. Results indicated inter-site differences in the dynamics of soil water storage and fluxes with contrasting water age both during the drought and the subsequent 2 years. Forest vegetation consistently showed a greater moisture stress, more rapid recovery and higher variability in root water uptake depths from a generally younger soil water storage. In contrast, the grassland site, which had more water-retentive soils, showed higher and older soil water storage and groundwater recharge fluxes. The damped storage and flux dynamics under grassland led to a slower return to younger water ages at depth. Such evidence-based and quantitative differences in ecohydrological feedbacks to drought stress in contrasting soil-vegetation units provide important insights into Critical Zone water cycling. This can help inform future progress in the monitoring, modelling and development of climate mitigation strategies in drought-sensitive lowlands.  相似文献   
7.
A turbidity maximum has been observed in the Kennebec estuary during mode rate and low flow conditions near the upstream limit of salinity intrusion. Hydrographic, ADCP, and transmissometer data were collected at different river flow levels and seasons during 1995–1998. The location of the tip of the salt intrusion changes dramatically and during high runoff may be flushed from the channel of the estuary along with the accumulated particles in the turbidity maximum. It is hypothesized that the estuarine turbidity maximum (ETM) was absent 18% of the time with occurrences in all seasons during 1993–1999 based on river flow volumes from the Kennebec and Androscoggin Rivers throughout the study period. When the flow is moderate and low, which occurred 73% of the time on average, a region of high turbidity can be found as far as 40 km upstream of the mouth. Suspended particulate loads are low in the ETM, on the order of tens of mg l−1 and may vary with the length of time that the ETM has been present.  相似文献   
8.
Although Himalayan glaciers are of particular interest in terms of future water supplies, regional climate changes, and sea-level rises, little is known about them due to lack of reliable and consistent data. There is a need for monitoring these glaciers to bridge this knowledge gap and to provide field measurements necessary to calibrate and validate the results from different remote sensing operations. Therefore, glaciological observations have been carried out by the Cryosphere Monitoring Project(CMP) since September 2011 on Rikha Samba Glacier in Hidden valley, Mustang district in western Nepal in order to study its annual mass balance. This paper presents the first results of that study. There are 10 glaciers in Hidden Valley, named G1, G2, G3, up to G10. Of these, G5 is the Rikha Samba Glacier, which has the largest area(5.37 km2) in this valley and the highest and lowest altitudes(6,476 and 5,392 m a.s.l., respectively). The glacier mass balance discussed in this paper was calculated using the glaciological method and the equilibrium line altitude(ELA). The glacier showed a negative annual point mass balance along the longitudinal profile of its lower part from September 10, 2011 to October 3, 2012. Stake measurements from October 4, 2012 to September 30, 2013 indicated a negative areal average of annual mass balance-0.088±0.019 m w.e. for the whole glacier. Based on these observations, the ELA of the Rikha Samba Glacier is estimated at 5,800 m a.s.l. in 2013. This negative balance may be due to rising air temperatures in the region, which have been incrementally rising since 1980 accompanied by little or no significant increase in precipitation in that period. The negative mass balance confirms the general shrinking trend of the glacier.  相似文献   
9.
We examine the simulated future change of the North Atlantic winter climate influenced by anthropogenic greenhouses gases and sulfate aerosol. Two simulations performed with the climate model ECHAM4/OPYC3 are investigated: a simulation forced by greenhouse gases and a simulation forced by greenhouse gases and sulfate aerosol. Only the direct aerosol effect on the clear-sky radiative fluxes is considered. The sulfate aerosol has a significant impact on temperature, radiative quantities, precipitation and atmospheric dynamics. Generally, we find a similar, but weaker future climate response if sulfate aerosol is considered additionally. Due to the induced negative top-of-the-atmosphere radiative forcing, the future warming is attenuated. We find no significant future trends in North Atlantic Oscillation (NAO) index in both simulations. However, the aerosol seems to have a balancing effect on the occurence of extreme NAO events. The simulated correlation patterns of the NAO index with temperature and precipitation, respectively, agree well with observations up to the present. The extent of the regions influenced by the NAO tends to be reduced under strong greenhouse gas forcing. If sulfate is included and the warming is smaller, this tendency is reversed. Also, the future decrease in baroclinicity is smaller due to the aerosols’ cooling effect and the poleward shift in track density is partly offset. Our findings imply that in simulations where aerosol cooling is neglected, the magnitude of the future warming over the North Atlantic region is overestimated, and correlation patterns differ from those based on the future simulation including aerosols.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号