首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地球物理   2篇
地质学   11篇
自然地理   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Thirty-three whole-rock drill core samples and thirteen olivine, chromite, and sulfide separates from three differentiated komatiite lava flows at Alexo and Pyke Hill, Canada, were analyzed for PGEs using the Carius tube digestion ID-ICP-MS technique. The emplaced lavas are Al-undepleted komatiites with ∼27% MgO derived by ∼50% partial melting of LILE-depleted Archean mantle. Major and minor element variations during and after emplacement were controlled by 30 to 50% fractionation of olivine Fo93-94. The emplaced lavas are characterized by (Pd/Ir)N = 4.0 to 4.6, (Os/Ir)N = 1.07, and Os abundances of ∼2.3 ppb. Variations in PGE abundances within individual flows indicate that Os and Ir were compatible (bulk DOs,Ir = 2.4-7.1) and that Pt and Pd were incompatible (bulk DPt,Pd < 0.2) during lava differentiation, whereas bulk DRu was close to unity. Analyses of cumulus olivine separates indicate that PGEs were incompatible in olivine (DPGEsOl-Liq = 0.04-0.7). The bulk fractionation trends cannot be accounted for by fractionation of olivine alone, and require an unidentified Os-Ir-rich phase. The composition of the mantle source (Os = 3.9 ppb, Ir = 3.6 ppb, Ru = 5.4 ppb, Pt and Pd = 5.7 ppb) was constrained empirically for Ru, Pt, and Pd; the Os/Ir ratio was taken to be identical to that in the emplaced melt, and the Ru/Ir ratio was taken to be chondritic, so that the absolute IPGE abundances of the source were determined by Ru. This is the first estimate of the PGE composition of a mantle source derived from analyses of erupted lavas. The suprachondritic Pd/Ir and Os/Ir of the inferred Abitibi komatiite mantle source are similar to those in off-craton spinel lherzolites, orogenic massif lherzolites, and enstatite chondrites, and are considered to be an intrinsic mantle feature. Bulk partition coefficients for use in komatiite melting models derived from the source and emplaced melt compositions are: DOs,Ir = 2.3, DRu = 1.0, DPt,Pd = 0.07. Ruthenium abundances are good indicators of absolute IPGE abundances in the mantle sources of komatiite melts with 26 to 29% MgO, as Ru fractionates very little during both high degrees of partial melting and lava differentiation.  相似文献   
2.
New analyses of highly siderophile elements (HSE; Re, Os, Ir, Ru, Pt, and Pd) obtained by Carius tube digestion isotope dilution inductively coupled plasma mass-spectrometry (ID-ICPMS) technique are reported for 187Os-enriched 2.8 Ga komatiites from the Kostomuksha greenstone belt. As a result of a significant improvement in the yield over our previous digestions by the NiS fire-assay technique, these komatiites have now been shown to contain 22 to 25% more Os, Ir, and Pt and 34% more Ru. The emplaced komatiite lavas at Kostomuksha thus had siderophile element abundances comparable to those of the Abitibi belt. The discrepancies observed between the two techniques are interpreted to be the result of incomplete digestion of HSE carriers (particularly chromite) during the NiS fire-assay procedure. Our results for UB-N peridotite reference material agree well with those obtained by the high-pressure ashing digestion ID-ICPMS technique reported in the literature. Two types of komatiite lavas have been distinguished in this study based on the IPGE (Os, Ir, and Ru) behavior during lava differentiation. The Kostomuksha type is unique and is characterized by an incompatible behavior of IPGEs, with bulk solid-liquid partition coefficients for IPGEs being close to those for olivine. Cumulate zones in this type of komatiite lava occupy <20% of the total thickness of the flows. The Munro type exhibits a compatible behavior of IPGEs during lava differentiation. The cumulate zone in this type of komatiite occupies >20% of the total thickness of the flows. The calculated bulk partition coefficients indicate that, as with the other Munro-type komatiite lavas, the bulk cumulate contained an IPGE-rich minor phase(s) in addition to olivine. The non-CI chondritic HSE pattern for the source of the Kostomuksha komatiites calculated here is similar to that of Abitibi komatiites and to average depleted spinel lherzolite (ADSL) and supports the hypothesis of a non-CI chondritic HSE composition of the Earth’s mantle. The absolute HSE abundances in the source of the Kostomuksha komatiite have been demonstrated to be comparable to those of the source of Abitibi komatiites, even though the two komatiites contrast in their Os isotopic compositions. This supports the earlier hypothesis that if core-mantle interaction produced the 187Os/188Os radiogenic signature in the Kostomuksha source, it must have occurred in the form of isotope exchange at the core-mantle boundary. Other explanations of the radiogenic Os signature are similarly constrained to conserve the elemental abundance pattern in the mantle source of Kostomuksha komatiites.  相似文献   
3.
High-precision Pt-Re-Os and Sm-Nd isotope and highly siderophile element (HSE) and rare earth element (REE) abundance data are reported for two 2.7 b.y. old komatiite lava flows, Tony’s flow (TN) from the Belingwe greenstone belt, Zimbabwe, and the PH-II flow (PH) from Munro Township in the Abitibi greenstone belt, Canada. The emplaced lavas are calculated to have contained ∼25% (TN) and ∼28% (PH) MgO. These lavas were derived from mantle sources characterized by strong depletions in highly incompatible lithophile trace elements, such as light REE (Ce/SmN = 0.64 ± 0.02 (TN) and 0.52 ± 0.01 (PH), ε143Nd(T) = +2.9 ± 0.2 in both sources). 190Pt-186Os and 187Re-187Os isochrons generated for each flow yield ages consistent with respective emplacement ages obtained using other chronometers. The calculated precise initial 186Os/188Os = 0.1198318 ± 3 (TN) and 0.1198316 ± 5 (PH) and 187Os/188Os = 0.10875 ± 17 (TN) and 0.10873 ± 15 (PH) require time-integrated 190Pt/188Os and 187Re/188Os of 0.00178 ± 11 and 0.407 ± 8 (TN) and 0.00174 ± 18 and 0.415 ± 5 (PH). These parameters, which by far represent the most precise and accurate estimates of time-integrated Pt/Os and Re/Os of the Archean mantle, are best matched by those of enstatite chondrites. The data also provide evidence for a remarkable similarity in the composition of the sources of these komatiites with respect to both REE and HSE. The calculated absolute HSE abundances in the TN and PH komatiite sources are within or slightly below the range of estimates for the terrestrial Primitive Upper Mantle (PUM). Assuming a chondritic composition of the bulk silicate Earth, the strong depletions in LREE, yet chondritic Re/Os in the komatiite sources are apparently problematic because early Earth processes capable of fractionating the LREE might also be expected to fractionate Re/Os. This apparent discrepancy could be reconciled via a two-stage model, whereby the moderate LREE depletion in the sources of the komatiites initially occurred within the first 100 Ma of Earth’s history as a result of either global magma ocean differentiation or extraction and subsequent long-term isolation of early crust, whereas HSE were largely added subsequently via late accretion. The komatiite formation, preceded by derivation of basaltic magmas, was a result of second-stage, large-degree dynamic melting in mantle plumes.  相似文献   
4.
Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ± 0.3 pg g? 1 Os, 1.5 ± 0.6 pg g? 1 Ir, 6.8 ± 2.7 pg g? 1 Ru, 16 ± 15 pg g? 1 Pt, 33 ± 30 pg g? 1 Pd and 0.29 ± 0.10 pg g? 1 Re (~ 0.00002 × CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (~ 0.00007 × CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle–crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments.If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust–mantle concentration ratios (D-values) must be ≤ 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust–mantle HSE partitioning for the Earth and Moon are somewhat surprising. Low HSE abundances in the lunar crust, coupled with estimates of HSE concentrations in the lunar mantle implies there may be a ‘missing component’ of late-accreted materials (as much as 95%) to the Moon if the Earth/Moon mass-flux estimates are correct and terrestrial mantle HSE abundances were established by late accretion.  相似文献   
5.
6.
We report the petrography, mineral and whole-rock chemistry (major-, trace-, and highly-siderophile element abundances, and osmium and oxygen isotope compositions) of a newly recognized lherzolitic shergottite, Yamato (Y) 984028. Oxygen isotopes (Δ17O = 0.218‰) confirm a martian origin for this meteorite. Three texturally distinctive internal zones and a partially devitrified fusion crust occur in the polished section of Y 984028 studied here. The zones include: 1) a poikilitic region with pyroxene enclosing olivine and chromite (Zone A); 2) a non-poikilitic zone with cumulate olivine, interstitial pyroxene, maskelynite and Ti-rich chromite (Zone B) and; 3) a monomict breccia (Zone C). The pyroxene oikocryst in Zone A is chemically zoned from Wo3–7En76–71 in the core region to Wo33–36En52–49 at the rim, and encloses more Mg-rich olivine (Fo74–70) in the core, as compared with olivines (Fo69–68) located at the oikocryst rim. Constraints from Fe–Mg partitioning between crystals and melt indicate that constituent minerals are not in equilibrium with the corresponding bulk-rock composition, implying that Y 984028 represents a cumulate. The whole-rock major- and trace-element compositions, and initial 187Os/188Os value (0.1281 ± 0.0002) of Y 984028 are similar to other lherzolitic shergottites and this sample is probably launch-paired with Y 793602, Y 000027, Y 000047, and Y 000097. The Os isotopic composition and highly-siderophile element (HSE) abundances of Y 984028 and other lherzolitic shergottites are consistent with derivation from a martian mantle source that evolved with chondritic Re/Os.  相似文献   
7.
The Kostomuksha greenstone belt consists of two lithotectonic terranes, one mafic igneous and the other sedimentary, separated by a major shear zone. The former contains submarine 2.8 Gyr old komatiite-basalt lavas and volcaniclastic lithologies with trace element and isotopic compositions resembling those of recent oceanic flood basalts [?Nd(T) =+ 2,8, μ.1= 8.73 (Nb/Th)N= 1.5–2.1 (Nb/La)N= 1.0–1.5]. We suggest that the mafic terrane is a remnant of the upper crustal part of an Archaean oceanic plateau derived from partial melting of a mantle plume head. When the plateau reached the continental margin, it collided with the sedimentary terrane but was too buoyant to subduct. As a result, the volcanic section of the plateau was imbricated and obducted thus becoming a new piece of continental crust. The deeper zones were subducted and disappeared from the geological record.  相似文献   
8.
 In the central Vetreny Belt, southeastern Baltic Shield, an areally extensive 110 m deep lava lake is exposed consisting of remarkably fresh differentiated komatiitic basalt. During eruption, the liquid had a temperature of 1380–1400 °C and contained ∼15% MgO. The lava ponded in a large topographic depression soon after eruption. The differentiation of the lava lake was controlled by settling of transported olivine and chromite phenocrysts and caused the origin of prominent internal layering. The last portions of the trapped liquid crystallized at temperatures of 1250– 1070 °C. A Sm-Nd isochron of 2410±34 Ma for whole rock samples, olivine, augite and pigeonite separates from the lava lake provides a reliable estimate for the time of formation of the uppermost sequences in the Vetreny Belt. This age is in good agreement with the Sm-Nd and Pb-Pb isochron ages of 2449±35 and 2424±178 Ma for the volcanic rocks from the same stratigraphic level in the northwestern Vetreny Belt. Modeling of Nd-isotopes and major and trace elements shows that the komatiitic basalts at Lion Hills may have had a komatiite parent depleted in highly incompatible elements. It can be shown that this initial liquid was contaminated by 7–9% of Archaean upper crustal material from the adjacent Vodla and Belomorian Blocks en route to the surface thus acquiring the observed geochemical and isotope signatures including relative enrichment in Zr, Ba, and LREE, negative Nb- and Ti-anomalies and ɛNd(T) of −1. Received: 8 December 1995/Accepted: 26 March 1996  相似文献   
9.
Rare lower crustal xenoliths found in Cenozoic alkali basalts from the Tariat region in central Mongolia and the Dariganga Plateau in south-eastern Mongolia are the only direct samples of lower crustal material known so far from central and eastern Asia. They are two-pyroxene granulites, including some garnet granulites, as well as scarce amphibolite-facies rocks. The xenoliths are broadly basaltic to andesitic in bulk chemical composition. Their igneous protoliths appear to represent underplated fractionated liquids and cumulates from such liquids. The xenoliths yield equilibration temperatures of 840 ± 30 °C (Wells, 1977) and, for Tariat garnet granulites only, pressures of 14 ± 1.5 kbar. For central Mongolia, these estimates indicate unusually great depths of origin which, however, are in line with some geophysical models for that area.

Extensive to complete kelyphitisation has affected the garnets where originally present in the Tariat suite; nevertheless, the kelyphite has largerly preserved the major element and REE compositions of the original garnet. Mineral and whole-rock Sm-Nd data obtained for three samples from Tariat and Dariganga indicate, within large errors, low or zero ages. These may either indicate that the rocks are young (Cenozoic) or that ambient temperatures in the lower crust were high enough to permit continuous isotopic equilibration on a mineral-to-mineral scale.  相似文献   

10.
The Tagish Lake meteorite is a primitive C2 chondrite that has undergone aqueous alteration shortly after formation of its parent body. Previous work indicates that if this type of material was part of a late veneer during terrestrial planetary accretion, it could provide a link between atmophile elements such as H, C, N and noble gases, and highly siderophile element replenishment in the bulk silicate portions of terrestrial planets following core formation. The systematic Re-Os isotope and highly siderophile element measurements performed here on five separate fractions indicate that while Tagish Lake has amongst the highest Ru/Ir (1.63 ± 0.08), Pd/Ir (1.19 ± 0.06) and 187Os/188Os (0.12564-0.12802) of all carbonaceous chondrites, these characteristics still fall short of those necessary to explain the observed siderophile element systematics of the primitive upper mantles of Earth and Mars. Hence, a direct link between atmophile and highly siderophile elements remains elusive, and other sources for replenishment are required, unless an as yet poorly constrained process fractionated Re/Os, Ru/Ir, and Pd/Ir following late accretion on both the Earth and Mars mantles.The unique elevated Ru/Ir combined with elevated 187Os/188Os of Tagish Lake may be attributed to Ru and Re mobility during aqueous alteration very early in its parent body history. The Os, Ir, Pt, and Pd abundances of Tagish Lake are similar to CI chondrites. The elevated Ru/Ir and the higher Re/Os and consequent 187Os/188Os in Tagish Lake, are balanced by a lower Ru/Ir and lower Re/Os and 187Os/188Os in CM-chondrites, relative to CI chondrites. A model that links Tagish Lake with CI and CM chondrites in the same parent body may explain the observed systematics. In this scenario, CM chondrite material comprises the exterior, grading downward to Tagish Lake material, which grades to CI material in the interior of the parent body. Aqueous alteration intensifies towards the interior with increasing temperature. Ruthenium and Re are mobilized from the CM layer into the Tagish Lake layer. This model may thus provide a potential direct parent body relationship between three separate groups of carbonaceous chondrites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号