首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2021年   1篇
  2016年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.

On September 5, 2019, the Veslemannen unstable rock slope (54,000 m3) in Romsdalen, Western Norway, failed catastrophically after 5 years of continuous monitoring. During this period, the rock slope weakened while the precursor movements increased progressively, in particular from 2017. Measured displacement prior to the failure was around 19 m in the upper parts of the instability and 4–5 m in the toe area. The pre-failure movements were usually associated with precipitation events, where peak velocities occurred 2–12 h after maximum precipitation. This indicates that the pore-water pressure in the sliding zones had a large influence on the slope stability. The sensitivity to rainfall increased greatly from spring to autumn suggesting a thermal control on the pore-water pressure. Transient modelling of temperatures suggests near permafrost conditions, and deep seasonal frost was certainly present. We propose that a frozen surface layer prevented water percolation to the sliding zone during spring snowmelt and early summer rainfalls. A transition from possible permafrost to a seasonal frost setting of the landslide body after 2000 was modelled, which may have affected the slope stability. Repeated rapid accelerations during late summers and autumns caused a total of 16 events of the red (high) hazard level and evacuation of the hazard zone. Threshold values for velocity were used in the risk management when increasing or decreasing hazard levels. The inverse velocity method was initially of little value. However, in the final phase before the failure, the inverse velocity method was useful for forecasting the time of failure. Risk communication was important for maintaining public trust in early-warning systems, and especially critical is the communication of the difference between issuing the red hazard level and predicting a landslide.

  相似文献   
2.
The Argentina National Road 7 that crosses the Andes Cordillera within the Mendoza province to connect Santiago de Chile and Buenos Aires is particularly affected by natural hazards requiring risk management. Integrated in a research plan that intends to produce landslide susceptibility maps, we aimed in this study to detect large slope movements by applying a satellite radar interferometric analysis using Envisat data, acquired between 2005 and 2010. We were finally able to identify two large slope deformations in sandstone and clay deposits along gentle shores of the Potrerillos dam reservoir, with cumulated displacements higher than 25 mm in 5 years and towards the reservoir. There is also a body of evidences that these large slope deformations are actually influenced by the seasonal reservoir level variations. This study shows that very detailed information, such as surface displacements and above all water level variation, can be extracted from spaceborne remote sensing techniques; nevertheless, the limitations of InSAR for the present dataset are discussed here. Such analysis can then lead to further field investigations to understand more precisely the destabilising processes acting on these slope deformations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号