首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   2篇
地质学   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
Abstract

A significant decrease in mean river flow as well as shifts in flood regimes have been reported at several locations along the River Niger. These changes are the combined effect of persistent droughts, damming and increased consumption of water. Moreover, it is believed that climate change will impact on the hydrological regime of the river in the next decades and exacerbate existing problems. While decision makers and stakeholders are aware of these issues, it is hard for them to figure out what actions should be taken without a quantitative estimate of future changes. In this paper, a Soil and Water Assessment Tool (SWAT) model of the Niger River watershed at Koulikoro was successfully calibrated, then forced with the climate time series of variable length generated by nine regional climate models (RCMs) from the AMMA-ENSEMBLES experiment. The RCMs were run under the SRES A1B emissions scenario. A combination of quantile-quantile transformation and nearest-neighbour search was used to correct biases in the distributions of RCM outputs. Streamflow time series were generated for the 2026–2050 period (all nine RCMs), and for the 2051–2075 and 2076–2100 periods (three out of nine RCMs) based on the availability of RCM simulations. It was found that the quantile-quantile transformation improved the simulation of both precipitation extremes and ratio of monthly dry days/wet days. All RCMs predicted an increase in temperature and solar radiation, and a decrease in average annual relative humidity in all three future periods relative to the 1981–1989 period, but there was no consensus among them about the direction of change of annual average wind speed, precipitation and streamflow. When all model projections were averaged, mean annual precipitation was projected to decrease, while the total precipitation in the flood season (August, September, October) increased, driving the mean annual flow up by 6.9% (2026–2050), 0.9% (2051–2075) and 5.6% (2076–2100). A t-test showed that changes in multi-model annual mean flow and annual maximum monthly flow between all four periods were not statistically significant at the 95% confidence level.  相似文献   
2.
3.
Two methods for generating streamflow forecasts in a Sahelian watershed, the Sirba basin, were compared. The direct method used a linear relationship to relate sea-surface temperature to annual streamflow, and then disaggregated on a monthly time scale. The indirect method used a linear relationship to generate annual precipitation forecasts, a temporal disaggregation to generate daily precipitation and the SWAT (Soil and Water Assessment Tool) model to generate monthly streamflow. The accuracy of the forecasts was assessed using the coefficient of determination, the Nash-Sutcliffe coefficient and the Hit score, and their economic value was evaluated using the cost/loss ratio method. The results revealed that the indirect method was slightly more effective than the direct method. However, the direct method achieved higher economic value in the majority of cost/loss situations, allowed for predictions with longer lead times and required less information.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号