首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   15篇
  国内免费   8篇
测绘学   2篇
大气科学   25篇
地球物理   27篇
地质学   81篇
海洋学   11篇
天文学   75篇
综合类   4篇
自然地理   17篇
  2021年   2篇
  2019年   7篇
  2018年   8篇
  2017年   7篇
  2016年   7篇
  2015年   6篇
  2014年   4篇
  2013年   9篇
  2012年   5篇
  2011年   12篇
  2010年   11篇
  2009年   5篇
  2008年   10篇
  2007年   9篇
  2006年   4篇
  2005年   17篇
  2004年   4篇
  2003年   7篇
  2002年   4篇
  2001年   5篇
  2000年   6篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   10篇
  1994年   4篇
  1993年   3篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   6篇
  1972年   3篇
  1971年   6篇
  1970年   3篇
  1925年   2篇
排序方式: 共有242条查询结果,搜索用时 31 毫秒
1.
Abstract— Martian meteorites (MMs) have been launched from an estimated 5–9 sites on Mars within the last 20 Myr. Some 80–89% of these launch sites sampled igneous rock formations from only the last 29% of Martian time. We hypothesize that this imbalance arises not merely from poor statistics, but because the launch processes are dominated by two main phenomena: first, much of the older Martian surface is inefficient in launching rocks during impacts, and second, the volumetrically enormous reservoir of original cumulate crust enhances launch probability for 4.5 Gyr old rocks. There are four lines of evidence for the first point, not all of equal strength. First, impact theory implies that MM launch is favored by surface exposures of near‐surface coherent rock (≤102 m deep), whereas Noachian surfaces generally should have ≥102 m of loose or weakly cemented regolith with high ice content, reducing efficiency of rock launch. Second, similarly, both Mars Exploration Rovers found sedimentary strata, 1–2 orders of magnitude weaker than Martian igneous rocks, favoring low launch efficiency among some fluvial‐derived Hesperian and Noachian rocks. Even if launched, such rocks may be unrecognized as meteorites on Earth. Third, statistics of MM formation age versus cosmic‐ray exposure (CRE) age weakly suggest that older surfaces may need larger, deeper craters to launch rocks. Fourth, in direct confirmation, one of us (N. G. B.) has found that older surfaces need larger craters to produce secondary impact crater fields (cf. Barlow and Block 2004). In a survey of 200 craters, the smallest Noachian, Hesperian, and Amazonian craters with prominent fields of secondaries have diameters of ?45 km, ?19 km, and ?10 km, respectively. Because 40% of Mars is Noachian, and 74% is either Noachian or Hesperian, the subsurface geologic characteristics of the older areas probably affect statistics of recognized MMs and production rates of secondary crater populations, and the MM and secondary crater statistics may give us clues to those properties.  相似文献   
2.
A synthesis of Holocene pollen records from the Tibetan Plateau shows the history of vegetation and climatic changes during the Holocene. Palynological evidences from 24 cores/sections have been compiled and show that the vegetation shifted from subalpine/alpine conifer forest to subalpine/alpine evergreen sclerophyllous forest in the southeastern part of the plateau; from alpine steppe to alpine desert in the central, western and northern part; and from alpine meadow to alpine steppe in the eastern and southern plateau regions during the Holocene. These records show that increases in precipitation began about 9 ka from the southeast, and a wide ranging level of increased humidity developed over the entire of the plateau around 8-7 ka, followed by aridity from 6 ka and a continuous drying over the plateau after 4-3 ka. The changes in Holocene climates of the plateau can be interpreted qualitatively as a response to orbital forcing and its secondary effects on the Indian Monsoon which expanded northwards  相似文献   
3.
Abstract— This paper addresses several current issues related to use of craters in interpreting planetary surface histories. The primary goal is to test the widely adopted hypothesis of multiple populations of impactors at different times or places in the Solar System. New data presented here revise a “lunar highland” crater diameter distribution that has been widely used as evidence of an early distinct population of impactors. This curve, which has a depression of the size distribution at mid-sizes, does not, in fact, represent the lunar highlands generally. I show that it is associated with regions of intercrater plains. The more extensive the obliteration by intercrater plains, the deeper the depression. Modeling indicates that the depression of the curve is caused by the obliteration process itself. The oldest, most cratered regions of lunar highlands do not show the depression. These findings call into question earlier interpretations of multiple populations of impactors in the Solar System and of a distinctive primordial population. The present work is consistent, instead, with (1) a relatively uniform size distribution of interplanetary impactors, of mixed origins, back to 4 Ga ago and throughout the sampled Solar System; (2) fragmentation as the process that produced that size distribution; (3) saturation equilibrium on the most heavily cratered surfaces; and (4) differences in structure in the size distribution caused not by distinct impactor populations but by episodes of endogenic obliteration. If accepted, these results would modify some studies of solar system evolution, including assertions of two to five distinct populations of impactors, assumptions of lack of saturation equilibrium, and identifications of specific heliocentric or planetocentric sources for impactors within outer planet satellite systems.  相似文献   
4.
The Late Permian (Wuchiapingian) Alcotas Formation in the SE Iberian Ranges consists of one red alluvial succession where abundant soil profiles developed. Detailed petrographical and sedimentological studies in seven sections of the Alcotas Formation allow six different types of palaeosols, with distinctive characteristics and different palaeogeographical distribution, to be distinguished throughout the South‐eastern Iberian Basin. These characteristics are, in turn, related to topographic, climatic and tectonic controls. The vertical distribution of the palaeosols is used to differentiate the formation in three parts from bottom to top showing both drastic and gradual vertical upwards palaeoenvironmental changes in the sections. Reconstruction of palaeoenvironmental conditions based on palaeosols provides evidence for understanding the events that occurred during the Late Permian, some few millions of years before the well‐known Permian‐Triassic global crisis.  相似文献   
5.
Spectrophotometric data show that major compositional groups among outer solar system (OSS) surfaces include bright ices and at least two distinct classes of blackish carbonaceous-like materials, called C-type and RD-type. VJHK colorimetry of asteroids, satellites, and laboratory samples shows that these three classes can be distinguished by VJHK colors. We define an “α index” that denotes the position of objects in VJHK color - color diagrams; it empirically increases with albedo and ice/dirt ratio. We use the above data to define color fields that may be useful in interpreting our observations of eight comets (1980–1981). All eight comets have colors generally resembling RD asteroids and are inconsistent with reflection off clean ice surfaces. The observations suggest that these comets' halos contain RD dirt or dirty ice grains colored by RD dirt, supporting J. Gradie and J. Veverka's [Nature283, 840–842 (1980)] prediction of RD, rather than C, material in comets. Remote Comet P/Schwassmann-Wachmann 1 was observed both during outburst and quiescence and had the highest α index of any observed comet. Comet α indices appear to be correlated with solar distance. Further work will be needed to clarify possible coloring effects due to particle size, dispersal, and composition. We suggest a number of physical interpretations based on a single two-component mixing model, which assumes that all OSS planetesimals formed primarily from bright ices and dark carboneceous-like dirt, consistent with condensation theory. We discuss differentiation processes that concentrated one component or the other at the surface. All measured OSS interplanetary bodies have surfaces of dark dirt or dark dirty ice colored by the dirt component. Comets, consistent with the Whipple dirty iceberg model, are such objects close enough to the Sun for volatilization to throw dirty ice grains into the coma. In remote comets, the ice component of the grains remains stable, and we see dirty ice grains; in near comets, the ice component vaporizes, and we see dirt grains. A volatile-depleted dusty regolith on P/Schwassmann-Wachmann 1 and other remote comets could explain their eruptive behavior by means of gas pressure buildup in the porous, weakly bonded dust.  相似文献   
6.
In the summer of 1988/89 flights were carried out in the Coorong coastal area of South Australia to investigate sea-breeze fronts. The flights yielded data sets of the structure of the fronts in the cross-frontal direction with a spatial resolution of approximately 3 m. The study is focused on the budgets of sensible and latent heat in the vicinity of the front and on frontogenesis/frontolysis processes which are closely related to budget considerations.The frontogenesis relationships and the budgets were established on a 2 km length scale by low-pass filtering of the space series. As the wind components were measured with high accuracy, all processes which determine frontogenesis could be evaluated and are displayed in x,z-cross-sections: these are the confluence, shear and diabatic effects, all of which play a role in q/x-, q/z-, /x- as well as /z-frontogenesis. A detailed analysis is given for two different states of frontal development. The presented results shed much light on the governing physical processes in the frontal region with strong emphasis on the effects of confluence-generated updrafts, on shear instabilities causing bulges and clefts in the frontal surface as well as producing the elevated frontal head, and on processes related to differential heating and moistening.  相似文献   
7.
A case study of warm air advection over the Arctic marginalsea-ice zone is presented, based on aircraft observations with direct flux measurements carriedout in early spring, 1998. A shallow atmospheric boundary layer (ABL) was observed, which wasgradually cooling with distance downwind of the ice edge. This process was mainly connected with astrong stable stratification and downward turbulent heat fluxes of about 10–20 W m-2, but wasalso due to radiative cooling. Two mesoscale models, one hydrostatic and the other non-hydrostatic,having different turbulence closures, were applied. Despite these fundamental differences betweenthe models, the results of both agreed well with the observed data. Various closure assumptions had amore crucial influence on the results than the differences between the models.Such an assumption was, for example,the parameterization of the surface roughness for momentum (z0) and heat (zT). This stronglyaffected the wind and temperature fields not only close to the surface but also within and abovethe temperature inversion layer. The best results were achieved using a formulation for z0 that took intoaccount the form drag effect of sea-ice ridges together withzT = 0.1z0. The stability within theelevated inversion strongly depended on the minimum eddy diffusivity Kmin. A simple ad hocparameterization seems applicable, where Kmin is calculated as 0.005 timesthe neutral eddy diffusivity. Although the longwave radiative cooling was largest within the ABL, theapplication of a radiation scheme was less important there than above the ABL. This was related to theinteraction of the turbulent and radiative fluxes. To reproduce the strong inversion, it wasnecessary to use vertical and horizontal resolutions higher than those applied in most regional andlarge-scale atmospheric models.  相似文献   
8.
The development of the boundary layer during a cold air outbreak in the FramStrait is documented by aircraft measurements. The convection was organisedinto roll vortices with aspect ratios increasing from 2.9 near the ice edgeto more than 6 at 100 km further downstream. This increase coincides with anincrease of the latent heat release in the cloud layer. The stability parameter-zi/L varies from about zero at the ice edge to 30 at a distance of 200 kmdownstream over open water where the satellite picture still shows cloudstreets. The increase is mainly due to the deepening of the boundary layer.The turbulent vertical sensible and latent heat fluxes near the surface amountto 400 W m-2 within a 300 km off-ice zone. 25% of the upward heat fluxin the subcloud layer is carried out by organised roll motions. Experimentswith a 2-dimensional non-hydrostatic model show a similar roll aspect ratio inthe first 50 km, but further downstream where condensational heating is moreimportant the modelled roll wavelengths are distinctly smaller than the observedones.  相似文献   
9.
A new parameterisation for the threshold shear velocity to initiate deflation of dry and wet particles is presented. It is based on the balance of moments acting on particles at the instant of particle motion. The model hence includes a term for the aerodynamic forces, including the drag force, the lift force and the aerodynamic-moment force, and a term for the interparticle forces. The effect of gravitation is incorporated in both terms. Rather than using an implicit function for the effect of the aerodynamic forces as reported earlier in literature, a constant aerodynamic coefficient was introduced. From consideration of the van der Waals force between two particles, it was further shown that the effect of the interparticle cohesion force between two dry particles on the deflation threshold should be inversely proportional to the particle diameter squared. The interparticle force was further extended to include wet bonding forces. The latter were considered as the sum of capillary forces and adhesive forces. A model that expresses the capillary force as a function of particle diameter squared and the inverse of capillary potential was deduced from consideration of the well-known model of Fisher and the Young–Laplace equation. The adhesive force was assumed to be equal to tensile strength, and a function which is proportional to particle diameter squared and the inverse of the potential due to adhesive forces was derived. By combining the capillary-force model and the adhesive force model, the interparticle force due to wet bonding was simplified and written as a function of particle diameter squared and the inverse of matric potential. The latter was loglinearly related to the gravimetric moisture content, a relationship that is valid in the low-moisture content range that is important in the light of deflation of sediment by wind. By introducing a correction to force the relationship to converge to zero moisture content at oven dryness, the matric potential–moisture content relationship contained only one unknown model parameter, viz. moisture content at −1.5 MPa. Working out the model led to a rather simple parameterisation containing only three coefficients. Two parameters were incorporated in the term that applies to dry sediment and were determined by using experimental data as reported by Iversen and White [Sedimentology 29 (1982) 111]. The third parameter for the wet-sediment part of the model was determined from wind-tunnel experiments on prewetted sand and sandy loam aggregates. The model was validated using data from wind-tunnel experiments on the same but dry sediment, and on data obtained from simulations with the model of Chepil [Soil Sci. Soc. Am. Proc. 20 (1956) 288]. The experiments showed that soil aggregates should be treated as individual particles with a density equal to their bulk density. Furthermore, it was shown that the surface had to dry to a moisture content of about 75% of the moisture content at −1.5 MPa before deflation became sustained. The threshold shear velocities simulated with our model were found to be in good agreement with own observations and with simulations using Chepil's model.  相似文献   
10.
我们业已研发了计算各向异性、非均质介质中P- SV转换波(C-波)的转换点和旅行时的新理论。据此 可以利用诸如相似性分析、迪克斯模型建模、克契 霍夫求和等常规方法来完成各向异性的处理和各向 异性处理,并使各向异性的处理成为可能。这里将 我们的新发展分作两部分来介绍。第一部分为理 论,第二部分为对速度分析和参数计算的应用。第 一部分理论包括转换点的计算和动校正的分析。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号