首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   1篇
大气科学   1篇
地质学   5篇
海洋学   1篇
天文学   2篇
  2016年   1篇
  2012年   2篇
  2002年   1篇
  1994年   1篇
  1992年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有9条查询结果,搜索用时 203 毫秒
1
1.
The franciscana dolphin, Pontoporia blainvillei, is endemic to the coastal waters of the southwestern Atlantic Ocean and the most endangered dolphin in the area. Four Franciscana Management Areas (FMAs) are currently recognised; however, results of genetic studies suggest the requirement for additional FMAs and highlight the need for more detailed studies in the southern extreme of the species distribution. With this aim, we studied the genetic diversity and population structure of the species analysing an mtDNA control region fragment (434?bp) in 44 individuals collected in four sampling sites located in Southern Buenos Aires. Haplotype diversity (H?=?0.75?±?0.05) was mostly higher than the observed in endangered or near threatened odontocetes. Population structure analyses suggest that three different genetic populations should be recognised within FMA IV: Northern, Eastern and Southern Buenos Aires. Altogether, these results should be taken into account in future conservation plans for the species.  相似文献   
2.
While tropical cyclones (TCs) usually decay after landfall, Tropical Storm Fay (2008) initially developed a storm central eye over South Florida by anomalous intensification overland. Unique to the Florida peninsula are Lake Okeechobee and the Everglades, which may have provided a surface feedback as the TC tracked near these features around the time of peak intensity. Analysis is done with the use of an ensemble model-based approach with the Developmental Testbed Center (DTC) version of the Hurricane WRF (HWRF) model using an outer domain and a storm-centered moving nest with 27- and 9-km grid spacing, respectively. Choice of land surface parameterization and small-scale surface features may influence TC structure, dictate the rate of TC decay, and even the anomalous intensification after landfall in model experiments. Results indicate that the HWRF model track and intensity forecasts are sensitive to three features in the model framework: land surface parameterization, initial boundary conditions, and the choice of planetary boundary layer (PBL) scheme. Land surface parameterizations such as the Geophysical Fluid Dynamics Laboratory (GFDL) Slab and Noah land surface models (LSMs) dominate the changes in storm track, while initial conditions and PBL schemes cause the largest changes in the TC intensity overland. Land surface heterogeneity in Florida from removing surface features in model simulations shows a small role in the forecast intensity change with no substantial alterations to TC track.  相似文献   
3.
4.
Short-term variations of the elements representing the Earth's motion around the Sun and its rotation have been analyzed over the last 6000 years using 1-year steps. Their low-frequency part is compared first to the values obtained from a secular theory of the planetary long-term motion showing that they can be considered reliable enough to represent adequately the motion of the Earth over the last 5000 years. Spectral analysis of these values shows that the main periodicities are 2.67, 3.98, 5.26, 5.93, 7.9, 9.8, 11.9, 14.7, 15.8, 29, 42, 61, 122, 165 and 250 years for the eccentricity as well as for the climatic precession, with an additional component at around 930 years for the eccentricity and around 840 years for the climatic precession. Periodicities at 2.67, 3.8, 5.9, 8.0, 9.3, 11.9, 14.7, 18.6, 29, 135, 250 and 840 yr are also shown for the obliquity. Spectral analyses of the daily July mid-month insolation at 65°N show essentially the same periodicities as the climatic precession and the obliquity, i.e. 2.67, 3.98, 5.92, 8.1, 11.9, 15.7, 18.6, 29, 40, 61 and around 900 years. Finally a wider analysis of the insolation pattern was performed related to the large periodicity band of the insolation time series for the solstices and the equinoxes for 7 different latitudes. In equatorial latitudes the insolation variance is largely explained by precession. But precession dominates everywhere with the obliquity signal being stronger at polar latitudes at the solstices. The amplitudes of the insolation change at these frequencies is of the order of 0.2 Wm–2 at the maximum. Offprint requests to: A Berger  相似文献   
5.
The fall and winter population of larval fish in a small intertidal creek was measured. The creek was blocked at high tide, and the immature fish were captured in a channel net designed for consistent quantitative sampling as they left with the ebbing tide. A total of 573,739 individuals with a biomass (preserved wet weight) of 66.1 kg were captured during the eight month sampling period (October 1974–May 1975). Twelve families, 13 genera, and 16 species were represented, with five species comprising 99.3% of the fish captured. The five species were:Leiostomus xanthurus (53.5%),Lagodon rhomboides (31.7%),Brevoortia tyrannus (11.9%),Micropogon undulatus (1.7%), andMyrophis punctatus (0.5%). The net was efficient, the catch was seasonal, and the greatest larval abundance occurred in February and March.  相似文献   
6.
Electron paramagnetic resonance (EPR) reveals the presence of free radicals in raw shale, shale oil, and spent shale. Thirty-four samples of raw shale, and the spent shale and shale oil produced in the Fischer assay of these raw shale samples were studied. There is a significant correlation between the gallons per ton oil yield as estimated by Fischer assay and the spin density in the raw oil shale. However, the scatter in the data (due to uncertainties in sample preparation, Fischer assay results, and estimation of spins per gram of sample) limits the analytical utility of this finding. Sample preparation techniques affect the EPR signal.  相似文献   
7.
Using the HURDAT best track analysis of track and intensity of tropical cyclones that made landfall over the continental United States during the satellite era (1980?C2005), we analyze the role of land surface variables on the cyclone decay process. The land surface variables considered in the present study included soil parameters (soil heat capacity and its surrogate soil bulk density), roughness, topography and local gradients of topography. The sensitivity analysis was carried out using a data-adaptive genetic algorithm approach that automatically selects the most suitable variables by fitting optimum empirical functions that estimates cyclone intensity decay in terms of given observed variables. Analysis indicates that soil bulk density (soil heat capacity) has a dominant influence on cyclone decay process. The decayed inland cyclone intensities were found to be positively correlated with the cube of the soil bulk density (heat capacity). The impact of the changes in soil bulk density (heat capacity) on the decayed cyclone intensity is higher for higher intensity cyclones. Since soil bulk density is closely related to the soil heat capacity and inversely proportional to the thermal diffusivity, the observed relationship can also be viewed as the influence of cooling rate of the land surface, as well as the transfer of heat and moisture underneath a land-falling storm. The optimized prediction function obtained by statistical model processes in the present study that predicts inland intensity changes during 6-h interval showed high fitness index and small errors. The performance of the prediction function was tested on inland tracks of eighteen hurricanes and tropical storms that made landfall over the United States between 2001 and 2010. The mean error of intensity prediction for these cyclones varied from 1.3 to 15.8 knots (0.67?C8.12?m?s?1). Results from the data-driven analysis thus indicate that soil heat flux feedback should be an important consideration for the inland decay of tropical cyclones. Experiments were also undertaken using Weather Research Forecasting (WRF) Advanced Research Version (ARW ver 3.3) to assess the sensitivity of the soil parameters (roughness, heat capacity and bulk density) on the post-landfall structure of select storms. The model was run with 1-km grid spacing, limited area single domain with boundary conditions from the North American Regional Reanalysis. Of different experiments, only the surface roughness change and soil bulk density (heat capacity) change experiments showed some sensitivity to the intensity change. The WRF results thus have a low sensitivity to the land parameters (with only the roughness length showing some impact). This calls for reassessing the land surface response on post-landfall characteristics with more detailed land surface representation within the mesoscale and hurricane modeling systems.  相似文献   
8.
西藏丁青弧前蛇绿岩的地球化学特征   总被引:9,自引:4,他引:9  
刘文斌  钱青等 《岩石学报》2002,18(3):392-400
丁青蛇绿岩位于班化湖-丁青-怒江蛇绿岩带的东段,其地幔岩出露规模是该带中最大的。本文报道的丁青蛇绿岩主要由地幔橄榄岩、堆晶岩、辉长岩和斜长花岗岩组成。蛇绿岩剖面上覆硅岩中的放射虫化石是早株罗世和晚三叠世诺利克期的,中侏罗统砂岩和砾岩不整合覆盖在蛇绿岩之上,由此确定丁青蛇绿岩是晚三叠-早侏罗世的,在中株罗世之前侵位,丁青蛇绿岩属于玻安岩系,玻安岩的特点是富Si、Mg和大离子亲石元素(LILE),贫高场强元素(Ti、P、Zr、Y、Yb和Nb)。丁青蛇绿岩的堆晶岩、辉长岩和辉绿岩均具“U”型REE分布,暗示丁青玻安岩是由于亏损的地幔源岩和来自消减带的水和流体两组分的混合形成的。丁青玻安岩的地球化学特征类似西太平洋第三纪玻安岩,而明显不同于MORB的地球化学性质, 表明丁青玻安岩应当形成于洋内岛弧的弧前环境,属于弧前蛇绿岩。  相似文献   
9.
LetN2 mass points (primaries) move on a collinear solution of relative equilibrium of theN-body problem; i.e. suitably fixed on a uniformly rotating straight line. Consider the motion of a massless particle in the gravitational field of these primaries with arbitrarily given masses. An existence proof for periodic solutions (i.e. closed trajectories in a rotating coordinate system) will be given, in which the particle performs nearly keplerian elliptic motions about (and close to) any one of the primaries.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号