首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
地球物理   1篇
地质学   6篇
自然地理   2篇
  2017年   1篇
  2016年   1篇
  2012年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  1992年   1篇
排序方式: 共有9条查询结果,搜索用时 46 毫秒
1
1.
Peatlands offer the potential for high resolution records of water balance over Holocene timescales, yet this potential is under-exploited in many areas of the world. Within Europe, peatlands are mostly confined to areas north of 55° N, but several areas of southern and eastern Europe contain small peatlands which may be suitable for palaeoclimatic reconstruction. In this paper we test the potential of peatlands in the Carpathian region for deriving quantified estimates of water table changes using testate amoebae analysis. A training set for palaeohydrological reconstruction from testate amoebae assemblages was obtained by collecting surface samples from 13 peatlands, including 9 from Hungary and 4 from Transylvania (Romania). Using a simple measure of mean annual water tables estimated from staining of PVC tape, we found that some peatlands were heavily influenced by runoff and groundwater, and were therefore not suitable as modern analogues of ombrotrophic climatically sensitive sites. The relationship between the testate amoebae assemblages in the modern samples and the environmental variables was explored using CCA. The CCA biplot showed that the most important variables are depth to water table and moisture content, confirming that hydrology is a key control on taxon distribution. pH was a secondary gradient. A transfer function for % moisture and depth to water table was established and applied to fossil assemblages from a sequence from Fenyves-tető, Transylvania, Romania. The reconstructed water table shows a number of variations which have parallels with other palaeoclimatic records from Europe and the North Atlantic prominent phases of higher water tables are associated with the periods 8000–8300 cal BP, 3000–2500 cal BP and after 600 cal BP. We suggest that these were periods of particular intensification of westerly airflow which affected eastern Europe as well as western and central Europe.  相似文献   
2.
Late glacial and early Holocene summer temperatures were reconstructed based on fossil chironomid assemblages at Lake Brazi (Retezat Mountains) with a joint Norwegian–Swiss transfer function, providing an important addition to the late glacial quantitative climate reconstructions from Europe. The pattern of the late glacial temperature changes in Lake Brazi show both similarities and some differences from the NGRIP δ18O record and other European chironomid-based reconstructions. Our reconstruction indicates that at Lake Brazi (1740 m a.s.l.) summer air temperature increased by ~ 2.8°C at the Oldest Dryas/Bølling transition (GS-2/GI-1) and reached 8.1–8.7°C during the late glacial interstade. The onset of the Younger Dryas (GS-1) was characterized by a weak (< 1°C) decrease in chironomid-inferred temperatures. Similarly, at the GS-1/Holocene transition no major changes in summer temperature were recorded. In the early Holocene, summer temperature increased in two steps and reached ~ 12.0–13.3°C during the Preboreal. Two short-term cold events were detected during the early Holocene between 11,480–11,390 and 10,350–10,190 cal yr BP. The first cooling coincides with the Preboreal oscillation and shows a weak (0.7°C) temperature decrease, while the second is characterized by 1°C cooling. Both cold events coincide with cooling events in the Greenland ice core records and other European temperature reconstructions.  相似文献   
3.
The Upper Eocene sequence of the Buda Hills consists of fluvial and shallow marine conglomerates, sandstones, bioclastic shallow-water limestone, marlstone and pelagicGlobigerina marl. The succession illustrates rapid, overall subsidence of the area, from terrestrial environments to bathyal depths. Sedimentation occurred on slopes situated on the flanks of synsedimentary basement antiforms. Vertical growth of antiforms caused progressive tilting of beds, layer-parallel extension by boudinage and faulting, and induced redeposition by mass flow. Antiforms are localised in the dextral Budaörs shear zone and in the Buda imbricate stack, which accommodated the dextral displacement. The latter is underlain by blind reverse faults probably merging into a detachment fault at shallow depths. These structures were formed by WNW-ESE oriented compression and NNE-SSW directed tension. The morphological expression of the imbricate stack is the SE-facing Buda slope.The Bakony unit, while escaping from the Alps, was bordered by a northern sinistral and a southern dextral shear zone. Synsedimentary tectonics in the Buda Hills demonstrates the style of deformation inside the escaping block, close to the southern border zone. Tectonically controlled sedimentation suggests that escape tectonics was active as early as Late Eocene time.
Zusammenfassung Die obereozäne Folge der Budaer Berge wird aus fluviatilen und Abtragungskonglomeraten, Sandsteinen, bioklastischen Flachwasserkalken, Mergelgesteinen sowie pelagischenGlobigerina-Mergeln aufgebaut. Die Abfolge weist eine rapide, im gesamten Gebiet vonstatten gehende Absenkung von kontinentaler Entwicklung bis zu bathyalen Tiefen nach.Die Sedimentation tritt auf Paläoabhängen an den Flanken von synsedimentären Antiklinalen auf Gesteinen des Basements auf. Die Hebung der Antiklinalen verursachte eine progressive Kippung der Sedimente eine schichtparallele Dehnung, durch Boudinage und Verwerfungen und induzierte eine Umlagerung durch Massenströme. Die Antiklinalen sind staffelförmig in der rechtsdrehenden Scherzone von Budaörs und in der verschuppten Brandungssäule von Buda angeordnet, die die Verwerfung begleiten. Die Zone von Buda korrespondiert zu einem SE-vergenten komplexen Abhang. Es liegt eine Unterlagerung von antithetischen Blindverwerfungen vor, die vermutlich in geringer Tiefe in eine Abscherungsverwerfung Übergeht. Alle Strukturen wurden durch WNW-ESE gerichtete Kompressionen und NNE-SSW orientierte Dehnungen geformt.Die Einheit des Bakony war während der Abtrennung von den Alpen umgrenzt durch eine nördliche sinistrale und eine südliche dextrale Scherzone. Die synsedimentäre Tektonik in den Budaer Bergen demonstriert den Deformationsstil innerhalb des abwandernden Blockes eng an der südlichen Grenzzone. Die tektonisch kontrollierte Sedimentation unterstreicht, dass die Ausquetschungstektonik bis in das späte Eozän hinein aktiv war.

Résumé La séquence sédimentaire d'âge éocène supérieur des collines de Buda est constituée de conglomérats fluviatiles et marins, de grès, de calcaires bioclastiques et de marnes néritiques ou pélagiques àGlobigerina. Cette succession correspond à une subsidence rapide, régionale, passant d'un environnement terrestre à un environnement bathial. La sédimentation s'est effectuée sur les pentes situées sur les flancs des anticlinaux synsédimentaires. Le soulèvement de ces anticlinaux a provoqué le basculement progressif des couches, une extension parallèle à la stratification avec boudinage et fractures, ainsi que le remaniement de sédiments par divers écoulements gravitaires. Les anticlinaux se situent dans la zone décrochante de Budaörs dont le déplacement dextre a été accompagné par un système d'écailles: la zone de Buda. Cette zone correspond à une pente complexe sédimentaire à vergence SE. Elle est caractérisée par des failles inverses aveugles qui se raccordent probablement à faible profondeur à une surface de décollement. Toutes ces structures ont été engendrées par une compression WNW-ESE et une extension NNE-SSW.Durant l'échappement continental, l'unité de Bakony était bordée au nord par une zone cisaillante sénestre et au sud par une zone cisaillante dextre. La tectonique synsédimentaire dans les collines de Buda montre le style de la déformation à l'intérieur du bloc séparé, près de sa limite méridionale. La sédimentation, régie par la tectonique, indique que l'échappement continental avait déjà commencé à l'Eocène supérieur.

, , , . . , . , , , . , . , -. , . WNW–OSO NNO-SSW. , , . , . , , , .
  相似文献   
4.
Violent explosive eruptions occurred between c. 51 and 29 thousand years ago—during the Last Glacial Maximum in East‐Central Europe—at the picturesque volcano of Ciomadul, located at the southernmost tip of the Inner Carpathian Volcanic Range in Romania. Field volcanology, glass geochemistry of tephra, radiocarbon and optically stimulated luminescene dating, along with coring the lacustrine infill of the two explosive craters of Ciomadul (St Ana and Mohos), constrain the last volcanic activity to three subsequent eruptive stages. The explosivity was due to the silicic composition of the magma producing Plinian‐style eruptions, and the interaction of magma with the underlying, water‐rich rocks resulting in violent phreatomagmatic outbursts. Tephra (volcanic ash) from these eruptions are interbedded with contemporaneous loess deposits, which form thick sequences in the vicinity of the volcano. Moreover, tephra layers are also preserved in the older Mohos crater infill, providing an important archive for palaeoclimate studies. Identifying the final phreatomagmatic eruption of Ciomadul at c. 29.6 ka, which shaped the present‐day landform of the 1600‐m‐wide St Ana explosion crater, we were able to correlate related tephra deposits as far as 350 km from the source within a thick loess‐palaeosol sequence at the Dniester Delta in Roxolany, Ukraine. A refined tephrostratigraphy, based on a number of newly found exposures in the Ciomadul surrounding region as well as correlation with the distal terrestrial and marine (e.g. Black Sea) volcano‐sedimentary record, is expected from ongoing studies.  相似文献   
5.
A high-resolution paleolimnological study from Lake Brazi, a small mountain lake in the Southern Carpathian Mountains, Romania, shows distinct diatom responses to late glacial and early Holocene climate change between ca. 15,750 and 10,000?cal?year BP. Loss-on-ignition, titanium, sulphur, phosphorus, biogenic silica content, and diatom assemblage composition were used as proxies for past environmental changes. Total epilimnetic phosphorus (TP) concentrations and lakewater pH were reconstructed quantitatively using diatom-TP and pH transfer functions. The most remarkable changes in the aquatic ecosystem were found at ca. 12,870 and 10,400?cal?year BP. Whereas the onset of the Younger Dryas (YD) climatic reversal was conspicuous in our record, the beginning of the Holocene was not well marked. Two diatom assemblage zones characterize the YD in Lake Brazi, suggesting a bipartite division of this climatic oscillation. The diatom responses to the YD cooling were (1) a shift from Staurosira venter to Stauroforma exiguiformis dominance; (2) a decrease in overall diatom diversity; (3) a decrease in lake productivity, inferred from DI-TP, organic matter, and biogenic silica content; and (4) a lowering of the DI-pH. Compositional change of the diatom assemblages suggested a sudden shift towards more acidic lake conditions at 12,870?cal?year BP, which is interpreted as a response to prolonged ice cover and thus shorter growing seasons and/or enhanced outwash of humic acids from the catchment. Taking into account the chironomid-based inference of only moderate July mean temperature decrease (<1?°C), together with the pollen-inferred regional opening of the forest cover and expansion of steppe-tundra, our data suggest that ecosystem changes in the Southern Carpathians during the YD were likely determined by strong seasonal changes.  相似文献   
6.
7.
Quaternary and directly underlying Late Miocene (Pannonian) outcrops were analysed by structural, tectono-morphologic and sedimentologic methods to describe the main fault directions, to separate mass movements from faulting and folding and to separate earthquake-induced sediment deformations from other (e.g. periglacial) effects in the Somogy Hills. This is a gentle hilly area elevated at 200–300 m above sea level, located immediately south of Lake Balaton, Hungary.

Quaternary outcrops showed several consistent directions of faulting, and co-depositional seismic activity. Three different Mohr-sets of faults/joints could be differentiated in Quaternary sediments. The three sets are considered Late Quaternary since all cut young loess sections and have morphological expressions.

On the basis of the microtectonic measurements and morphotectonic investigations, the following sequence of Quaternary events can be proposed:

1. A (W)NW–(E)SE compression and perpendicular extension would create E–W to WNW–ESE oriented right lateral, NNW–SSE to N–S oriented left lateral shear zones, and NW–SE striking normal faults. Some of these can be evidenced in morphology and among the individual fault measurements. Some reactivated faults might suggest that this field is a relatively older one, but fresh topographic elements suggest that this stress field might be operational sub-recently.

2. A second stress field with NNW–SSE extensional and ENE–WSW oriented compressional directions could be separated. This stress field could create NNE–SSW and NW–SE oriented shear fractures and ENE–WSW oriented conjugate normal faults. Flat thrusts giving ENE directed shear may also be active under this field.

3. A third stress field might be proposed with N–S compression and perpendicular extension directions. This would create NE–SW and NW–SE oriented shear fractures, which are observed in the measured fault data. It is remarkable that the NE–SW faults are all steep, subvertical, and give a very well defined fault set. Based on the fresh topographic expression, this stress field is also sub-recent.

The different sub-recent stress fields and related fault patterns might succeed each other or might alternate through time. The first and third deformations have fresh topographic expressions and cannot play synchronously. The observed features suggest a compressionally active neotectonics of the study area.  相似文献   

8.
To reconstruct the evolution of Late-Quaternary river network in the southeastern part of the Great Hungarian Plain, we have used optically stimulated luminescence (OSL) and heavy mineral analysis of 25 sand samples from the upper 2–8 m of the fluvial units, complemented by four radiocarbon ages. The estimated OSL depositional ages vary between 10 and 47 ka. The heavy mineral composition of the OSL samples was compared to the compositional data of recent river sediments using cluster analysis. The new OSL and heavy mineral data show that from 47 to 10 ka ago the sediments were transported mainly from the northeast direction into the southeastern part of the Great Hungarian Plain by the ancestor of the Tisza river and its northern tributaries, and probably by another large river which also flowed northeast–southwest, parallel to the modern Tisza. Between 23 and 14 ka sediments periodically came from the east and reached the eastern part of our study area. Between 15 and 12 ka ago, sands transported from the southeast also occur in the southeastern and central part of the study area. These data suggest that the modern rivers occupied their present courses only in the last 10 ka.  相似文献   
9.
The Somogy hills are located in the Pannonian Basin, south of Lake Balaton, Hungary, above several important tectonic zones. Analysis of industrial seismic lines shows that the pre-Late Miocene substratum is deformed by several thrust faults and a transpressive flower structure. Basement is composed of slices of various Palaeo-Mesozoic rocks, overlain by sometimes preserved Paleogene, thick Early Miocene deposits. Middle Miocene, partly overlying a post-thrusting unconformity, partly affected by the thrusts, is also present. Late Miocene thick basin-fill forms onlapping strata above a gentle paleo-topography, and it is also folded into broad anticlines and synclines. These folds are thought to be born of blind fault reactivation of older thrusts. Topography follows the reactivated fold pattern, especially in the central-western part of the study area.

The map pattern of basement structures shows an eastern area, where NE–SW striking thrusts, folds and steep normal faults dominate, and a western one, where E–W striking thrusts and folds dominate. Folds in Late Neogene are also parallel to these directions. A NE–SW striking linear normal fault and associated N–S faults cut the highest reflectors. The NE–SW fault is probably a left-lateral master fault acting during–after Late Miocene. Gravity anomaly and Pleistocene surface uplift maps show a very good correlation to the mapped structures. All these observations suggest that the main Early Miocene shortening was renewed during the Middle and Late Miocene, and may still persist.

Two types of deformational pattern may explain the structural and topographic features. A NW–SE shortening creates right-lateral slip along E–W faults, and overthrusts on NE–SW striking ones. Another, NNE–SSW shortening creates thrusting and uplift along E–W striking faults and transtensive left-lateral slip along NE–SW striking ones. Traces of both deformation patterns can be found in Quaternary exposures and they seem to be consistent with the present day stress orientations of the Pannonian Basin, too. The alternation of stress fields and multiple reactivation of the older fault sets is thought to be caused by the northwards translation and counter-clockwise rotation of Adria and the continental extrusion generated by this convergence.  相似文献   

1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号