首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
地质学   2篇
  2020年   1篇
  2014年   1篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The problem of reducing the seismic risk for art objects, that are the objects generally contained within Museums, is of great interest. The first studies were performed in Japan and were successively organized in a general framework by a research program performed at Southern California University and sponsored by the Getty Museum at Malibu, California. In these papers and in the following Italian studies, the theoretical models for the problem concerning vases and statues are based on the dynamic behavior of rigid blocks and have been deeply developed. Unfortunately, because of the great lack of experimental data, determinant parameters for the problem characterization (like the friction between two superimposed blocks or between the art object and the support plane) are often assumed without reference to real values derived from laboratory tests. This paper presents the results of a research program containing the experimental determination of the friction coefficient between the art object and the support (by means of a testing apparatus on purpose realized) together with dynamic tests performed on simple-shaped objects made of different materials. The dynamic tests were performed using an unidirectional shaking table and different supporting surfaces, so that the influence of different friction coefficients has been analyzed.  相似文献   
2.
The paper deals with the seismic response analysis of nonlinear secondary oscillators. Bilinear, sliding and rocking single-degree-of-freedom dynamic systems are analysed as representative of a wide spectrum of secondary structures and nonstructural components. In the first stage, the equations governing their full dynamic interaction with linear multi-degree-of-freedom primary structures are formulated, and then conveniently simplified using primary-secondary two-degree-of-freedom systems and dimensionless coefficients. In the second stage, the cascade approximation is applied, whereby the feedback action of the secondary oscillator on the primary structure is neglected. Owing to the piecewise linearity of the secondary systems being considered, efficient semi-analytical and step-by-step numerical solutions are presented. The semi-analytical solutions allow the direct evaluation of the seismic response under pulse-type ground excitations and are also used to validate step-by-step numerical schemes, which in turn can be used for general-type seismic excitations. In the third stage, a set of decoupling criteria are proposed for the pulse-type base excitations, identifying the conditions under which a cascade analysis is admissible from an engineering standpoint. Finally, the influence and relative dependencies between the input parameters of the ground motion and the primary-secondary assembly are quantified on the response of the secondary systems through nonlinear floor response spectra, and general trends are identified and discussed.  相似文献   
3.
In this paper, we investigate the upper crustal structure of the Irpinia region, Southern Apennines thrust belt, Italy, through analysis and joint interpretation of gravity data, seismic reflection lines and subsurface information from many deep wells. The investigated region includes the epicentral area of the 1980 (Ms=6.9) Irpinia earthquake and is one of the Italian regions with the highest seismic hazard. The upper crustal structure is imaged by modeling a series of 15 SW-trending gravity profiles, spaced about 5 km apart, plentifully constrained by seismic reflection lines and wells, thus reducing the inherent ambiguity of the gravity modeling. Despite of the complexity of the modeled Bouguer anomalies, the application of a calibrating procedure to constrain the range of variability of the density values, as well as the use of geometric constraints, results in a good level of stability in the final density cross-sections, which in fact appear coherent both in the density values and in the geometrical features. The inferred model shows important lateral density variations that can be mostly related to NW-trending geologic structures. High-density bodies delineate carbonate platform thrust sheets and broad antiforms involving Mesozoic basinal rocks, while low-density shallow bodies are associated with Pliocene basins. In addition, important density (i.e. lithological) variations are evident along the strike of the range, the most relevant being an abrupt deepening of the Apulia Carbonate Platform in the southeastern part of the investigated region. In the epicentral region of the 1980 event, we find that the geometry of the high-density, high-velocity carbonates of the Apulia Platform appears correlated with the distribution of the aftershocks and with the P-wave velocity anomaly pattern as inferred from a previous local earthquake tomography. The structural highs of the Apulia Platform correspond to high-velocity regions, where aftershocks and coseismic slip of the mainshock are concentrated. This correlation suggests that the Apulia Carbonate Platform geometry played an important role in the rupture propagation and in the aftershock distribution.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号