首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
大气科学   3篇
地球物理   5篇
地质学   6篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2009年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Abstract

The Hulu Langat basin, a strategic watershed in Malaysia, has in recent decades been exposed to extensive changes in land-use and consequently hydrological conditions. In this work, the impact of Land Use and Cover Change (LUCC) on hydrological conditions (water discharge and sediment load) of the basin were investigated using the Soil and Water Assessment Tool (SWAT). Four land-use scenarios were defined for land-use change impact analysis, i.e. past, present (baseline), future and water conservation planning. The land-use maps, dated 1984, 1990, 1997 and 2002, were defined as the past scenarios for LUCC impact analysis. The present scenario was defined based on the 2006 land-use map. The 2020 land-use map was simulated using a cellular automata-Markov model and defined as the future scenario. Water conservation scenarios were produced based on guidelines published by Malaysia’s Department of Town and Country Planning and Department of Environment. Model calibration and uncertainty analysis was performed using the Sequential Uncertainty Fitting (SUFI-2) algorithm. The model robustness for water discharge simulation for the period 1997–2008 was good. However, due to uncertainties, mainly resulting from intense urban development in the basin, its robustness for sediment load simulation was only acceptable for the calibration period 1997–2004. The optimized model was run using different land-use maps over the periods 1997–2008 and 1997–2004 for water discharge and sediment load estimation, respectively. In comparison to the baseline scenario, SWAT simulation using the past and conservative scenarios showed significant reduction in monthly direct runoff and monthly sediment load, while SWAT simulation based on the future scenario showed significant increase in monthly direct runoff, monthly sediment load and groundwater recharge.
Editor D. Koutsoyiannis; Associate editor C. Perrin  相似文献   
2.
3.
Main characteristics of the atmosphere disturbances over the mountains are calculated with a nonlinear two-dimensional stationary model of the airstream over mountains depending on the properties of the unperturbed upstream. A spatial humidity distribution over mountains is defined under assumption that water vapor is transported with airstreams like a passive pollutant. The derived humidity fields and calculated temperature distribution are used for determining the spatial relative humidity distribution over mountains. Critical values of the relative humidity in the interval of 70–100% are used for identifying the cloud zone boundaries. The analysis is performed on the cloud zone dependence on vertical distribution of relative humidity in the upstream and on the mountain form characteristics. The studies are conducted with a special reference to a complicated mountain relief in Southern Zagros (Iran).  相似文献   
4.
In this paper, an approach is presented to analyze the stability risk of rock slopes based on a new rating system. Three factors are used to estimate the risk level of rock slopes: (1) failure probability, (2) element at risk rating, and (3) vulnerability rating. Element at risk and vulnerability ratings are both given a range from 0 to 10, and the probability of failure is varied between 0 and 1, so the risk rating ranges between 0 and 100. This risk rating can be used to determine both the quantitative and qualitative risk levels of slopes at the same time. The method is tested on the western sector of the slopes facing Songun copper plant phase III, Iran, to clarify its procedures and assess its validity. Deterministic kinematic analyses showed that the slope has a potential for circular failure. Risk assessments revealed that the risk levels of the slope in both static and pseudo-static conditions are “very low” and “high,” respectively.  相似文献   
5.
Greenhouse tests were conducted to study the effect of chelates on the phytoextraction of cadmium and lead, and the rhizodegradation of used engine oil present as a mixed contaminant in a sandy soil. Indian mustard plants were grown in test pot soil for 30 days and chelates ethylenediamine tetraacetic acid (EDTA) and ethylenediaminedisuccinic acid (EDDS) were individually applied to the test soil. The soil was spiked earlier with 50 mg kg?1 of CdCl2, 500 mg kg?1 of PbCl2 and 500 mg kg?1 of used engine oil to form the mixed soil contaminant. At the same concentration of chelates, EDTA was found to be more effective than EDDS in increasing the concentration of metal contaminants Cd and Pb in the plant. Compared to EDDS, EDTA was also more effective in promoting rhizodegradation of the organic contaminant formed by used engine oil. The study demonstrated that the application of chelates to soils containing mixed contaminants such as heavy metals (Cd and Pb) and organics (used engine oil) can simultaneously assist metal accumulation at higher concentrations in the biomass of Indian mustard plant and also reduce the amount of used engine oil in the soil through rhizodegradation.  相似文献   
6.
7.
Geomagnetism and Aeronomy - The global TEC (Total Electron Content) behavior has been studied for several decades, but some properties of this behavior have not been understood well, such as the...  相似文献   
8.
Two main goals are considered in this paper: (1) modification and computation of the local coefficients of the space-time windows in the well-known declustering algorithm introduced by Gardner and Knopoff (1974) and (2) checking the independence of the Iranian mainshocks obtained from applying the new modified model. First, 21 of the well-documented earthquake sequences of Iran in the time period of 1972 to 2008 with the mainshock magnitude ranged from M w = 5.4–7.1 were used to define the new local space-time windows of declustering. Generally, using these Iranian earthquake sequences led to introduce bigger space-time windows for the new model in comparison to the Gardner and Knopoff’s (1974) windows. In the next step, to control the independence of Iranian mainshocks, the events of the Iranian earthquake catalog in the time span of 1964–2010 with moment magnitude of M w = 3.5–7.4 were used. In this respect, dependent events corresponding to the seven seismotectonic zones of Iran were removed using the new modified space-time windows. After declustering, the mainshock catalog was examined by the Kolmogorov–Smirnov goodness-of-fit test, and it was found to follow a Poisson distribution in all the studied seismotectonic zones of Iran. The same test on times between successive declustered events shows that the inter-event times of all catalogs follow an exponential distribution.  相似文献   
9.
Iranian earthquakes, a uniform catalog with moment magnitudes   总被引:3,自引:1,他引:2  
A uniform earthquake catalog is an essential tool in any seismic hazard analysis. In this study, an earthquake catalog of Iran and adjacent areas was compiled, using international and national databanks. The following priorities were applied in selecting magnitude and earthquake location: (a) local catalogs were given higher priority for establishing the location of an earthquake and (b) global catalogs were preferred for determining earthquake magnitudes. Earthquakes that have occurred within the bounds between 23–42° N and 42–65° E, with a magnitude range of M W 3.5–7.9, from the third millennium BC until April 2010 were included. In an effort to avoid the “boundary effect,” since the newly compiled catalog will be mainly used for seismic hazard assessment, the study area includes the areas adjacent to Iran. The standardization of the catalog in terms of magnitude was achieved by the conversion of all types of magnitude into moment magnitude, M W, by using the orthogonal regression technique. In the newly compiled catalog, all aftershocks were detected, based on the procedure described by Gardner and Knopoff (Bull Seismol Soc Am 64:1363–1367, 1974). The seismicity parameters were calculated for the six main tectonic seismic zones of Iran, i.e., the Zagros Mountain Range, the Alborz Mountain Range, Central Iran, Kope Dagh, Azerbaijan, and Makran.  相似文献   
10.
The M8 algorithm is one of the most reliable intermediate-term middle-range earthquake prediction algorithms. The present study evaluates the ability of the M8 algorithm and its modified versions for predicting major events (M7+) in Turkey. Thirty different algorithms were developed by changing the radius of circle of investigation (CI) and the lower magnitude cutoff of the M8 algorithm. These modified algorithms were executed all over the territory of Turkey, and the results were evaluated using the error diagram. Each modified algorithm was executed for consecutive half-year intervals over a specified period of time. Subsequently, the seismic catalog was updated, and failures-to-predict ratio and the fraction of alarm were considered. Results showed that the location of areas of alarm change gradually over consecutive intervals, and no sudden changes can be observed. In addition, the annual changes of areas of alarm are not random and follow a pattern. This study also showed that the modified algorithm having a three to six annual average of events and a 393-km CI radius is an efficient algorithm for predicting the future seismic events in Turkey. This algorithm predicted six out of six target events, retrospectively, with a confidence level of 96.4 %. According to the obtained results, it will be possible to rely on this modified algorithm to predict near future earthquakes of Turkey. Furthermore, this study proves that it is possible to alter the M8 algorithm for being used in regional studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号